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ABSTRACT: Antimicrobial peptides (AMPs) represent a promis-
ing alternative to traditional antibiotics against which many
bacteria are rapidly gaining resistance. Today, databases containing
tens of thousands of AMPs, along with their properties and
biological activities, can be screened to select lead candidates for a
given application. The conformational plasticity of AMPs has been
proven crucial for the recognition of their targets. However, the
volume, complexity, and recalcitrance to classification of conforma-
tional data, obtained from e.g. molecular dynamics (MD)
simulations, prevent it from being included in databases, let
alone used as a criterion for the screening of AMPs. This work
applies the transformer neural network architecture (which powers
large language models such as ChatGPT) to the detection of
temporal and spatial context in time series of AMP conformations from MD simulations. It shows how the representation of AMP
conformational space learned by the network can be leveraged for the unsupervised classification of AMP plasticity, which can
subsequently be used alongside conventional properties for the screening of databases. Thus, it reveals how deep learning can pave
the way toward restoring conformational dynamics to its legitimate importance within drug design pipelines.

■ INTRODUCTION
Antimicrobial resistance in bacteria poses a growing threat to
global public health.1 On the one hand, the rapid onset of
resistance discourages the pharmaceutical industry from invest-
ing in the research for new candidates within existing antibiotic
classes;2 on the other, only two truly new classes have reached
the market in the last 70 years.3 In addition, the COVID-19
pandemic has recently provided a painful reminder of how
secondary bacterial infections can act as comorbidities to
complicate other diseases.4 The search for alternate approaches
to traditional antibiotics is therefore more crucial than ever.

Antimicrobial peptides (AMPs), which have evolved to
provide a natural protection against pathogens in organisms
spanning every kingdom, represent a promising alternative to
conventional antibiotics.5 AMPs mostly target the bacterial
membrane using multiple modes of action, making it difficult for
the pathogen to acquire resistance;6 they often also double as
antiviral, anticancer or immunomodulatory agents.7 Despite the
rapidly growing number of identified AMPs − to date, the
ADAPTABLEWeb server hosted by our research group,8 which
aggregates data from multiple databases, contains more than
40,000 nonredundant AMP sequences − very few AMPs have
made it to clinical trials, essentially due to human toxicity and
limited absorption issues.9 However, synthetic AMP derivatives
mitigating these issues are now actively researched.10,11

In this context, the proficient selection of AMPs as lead
compounds for a given application is crucial. Databases collating

AMP features and properties are continually enriched and have
become invaluable tools for the initial screening process.8,12−17

However, as for most classes of biomolecules, the definition of a
minimal, nonredundant set of properties on which to base an
AMP selection and classification process remains an elusive task.
While sequence information, chemical properties and biological
context (antimicrobial activities, source, modifications···) are
the most straightforward descriptors, select databases also
include information from clinical trials,13 genomics and
transcriptomics,12 or structure and conformational dynamics.16

The latter is of particular interest: indeed, advances in nuclear
magnetic resonance and molecular dynamics (MD) simulations
have revealed the importance of the molecular plasticity of
AMPs in the recognition of their targets.18 Consequently, MD
simulations, which can render both AMP flexibility and
membrane lipid dynamics, are now gaining traction as part of
antibiotics discovery pipelines.19 However, because of the
difficulty of concisely representing and categorizing the raw
conformational data from MD, such simulations are not used in
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the AMP screening process, but later in the pipeline as a
confirmation of the relevance of previously selected lead AMPs.
This is also the case for studies claiming to combine machine
learning andMD simulations for the selection of AMPs, which in
fact only use MD downstream of the AMP selection process.2,20

This paper applies deep learning methods originating from
large language models (LLMs) to represent and classify the
conformational space of AMPs, as obtained from MD
simulations. LLMs based on the transformer architecture21

and trained on large text corpuses power chatbots (such as
ChatGPT) that are currently taking the world by storm. The
transformer’s success is due to its ability to capture context
within texts: if one considers the temporal sequence of AMP
conformations and the spatial sequence of amino acids along the
AMP chain as a succession of tokens, just like the words in a
sentence or paragraph, then the transformer should in theory be
able to extract context from AMP conformational data and build
an internal representation of it that can be used for many
downstream applications, including nonsupervised classifica-
tion. This work verifies this assumption and shows how such a
classification can be used as an additional discriminant for the
selection of AMPs, alongside the more traditional features
mentioned above, within a drug design pipeline.

■ METHODS

AMP Conformation Data Set
Aside from being one of the most referenced AMP databases,22

DBAASP16 is the state-of-the-art repository ofMD trajectories of AMPs
simulated under unified conditions (see the previously cited paper for
details of the simulation pipeline). The sampling provided by its
CHARMM-formatted 400 ns trajectories of solvated AMPs (2000
frames at 0.2 ns intervals) is not exhaustive, but sufficient to provide a
reasonable overview of the main attraction basins on the AMP
conformational landscapes. 9440 DBAASP entries featured MD data;
to unify the length of the time sequences in the data set, only the 9424
entries with full-length trajectories were retained. Similarly, a maximum
value for the amino acid sequence lengths of all AMPs in the data set
was chosen, with shorter AMPs being padded up to this length and
longer AMPs discarded from the data set. Using padding allows the
transformer neural network to account for multiple sequence length;
however, an excessive amount of padding (i.e., a comparable or higher
proportion of padded positions compared to effective positions over the
entire data set) will severely hamper learning efficiency and possibly
degrade the performance of the trained network. The distribution of
AMP lengths was thus analyzed to find the most suitable maximum
length. It had minimal and maximal values of 1 and 118, respectively, a
mean of 17.00, a median of 16 and a standard deviation of 7.16. The
cumulative histogram of data set populations showed a marked plateau
around a value of 30 (see Supporting Information figure S1); the
maximum length was thus chosen as 30 amino acids, which resulted in
9191 AMPs being retained. Because DBAASP is a manually curated
database, no further filtering of AMP entries was performed.

The conformation of an AMP was represented using one
Ramachandran number per amino acid. Ramachandran numbers are
a concise way of paving (ϕ, ψ) Ramachandran space using a single order
parameter comprised between 0 and 1.23 Each data set entry thus
consisted of a real-valued, multivariate series of length 30 along the
amino acid sequence dimension and 2000 along the temporal
dimension. Each series was segmented into 120 pieces, subseries of
respective sequence and temporal length 10 and 50 which were
flattened to 1D 500-vectors. Each AMPwas thus represented by a 500 ×
120 tensor aggregating all 120 subseries vectors (see Supporting
Information figure S2 for a schematic representation). Due to the fact
that (i) amino acid sequence positions that have been padded to
achieve the common length of 30 amino acids contain no meaningful
conformational information, and that (ii) past elements in the time

sequence cannot be allowed to attend to future elements due to the
unidirectional nature of time,24 certain pairs of tensor elements must
not be allowed to participate in the transformer self-attention
mechanism. This was implemented by associating boolean mask
tensors to the tensors containing the conformational data.

The amino acid sequence of each AMP was encoded using
ProtVec.25 In this approach, a sequence is decomposed into a set of
overlapping, 3-amino acid “words” or 3-grams. These are encoded as
vectors, maximizing the probability of word sequences observed
throughout the Swiss-Prot database. In this work, an encoding
dimensionality of 120 was chosen for the 3-grams, matching the
dimensionality of the conformational data (and of similar magnitude to
the 100-dimensional 3-grams used in the original ProtVec study).
Protein language models (pLMs) provide theoretically superior
contextual sequence embeddings using transformers.26 However,
performance gains compared to ProtVec would only become apparent
in much longer protein chains where long-distance context is
paramount; in addition, pLMs require fine-tuning to achieve their
true potential,27 which is computationally costly and would further
complexify the existing transformer model, with no guarantee of
performance returns for AMPs shorter than 30 amino acids.

AMP Properties Data Set

All physicochemical properties and antimicrobial activities were taken
from the DBAASP database. The 12 physicochemical properties
(amphiphilicity index, angle subtended by the hydrophobic residues,
disordered conformation propensity, isoelectric point, linear moment,
net charge, normalized hydrophobic moment, normalized hydro-
phobicity, penetration depth, propensity to PPII coil, propensity to in
vitro aggregation, tilt angle) are defined in the founding DBAASP
articles;16,28 they are not meant as a minimum set of independent
descriptors, but have been chosen for their ease of computing and their
use as predictors of antimicrobial activities.28 They were present for all
9191 entries. Antimicrobial activities have been manually extracted
from the literature by DBAASP curators;16 thus, the available activity
measures and target microbes varied a lot between entries. To strike the
best balance between a large data set and one which features a
consistent number of activities per entry, the availability of activities
across DBAASP entries was explored. Activities on Escherichia coli,
Staphylococcus aureus and Pseudomonas aeruginosa were the most
frequent, respectively present in 66%, 59% and 43% of entries (with the
next most frequent microorganism, Candida albicans, at 23%). 76% of
AMPs had activities for at least one of these 3 bacteria (78% including
C. albicans) and 35% of AMPs had activities for all three (14% including
C. albicans). For activity measures, the picture was more straightfor-
ward, with 76% of entries featuring minimum inhibitory concentration
(MIC) values (the next most frequent measure, the minimum
bactericidal concentration, came in at 10%). The set of 9191 AMPs
with conformational information was thus filtered to retain entries
having a MIC value for at least one of E. coli, S. aureus and P. aeruginosa.
6447 entries were thus retained.

The physicochemical properties were normalized according to their
nature and the shape of their distributions across the data set, using
either z-score, logarithmic or sine/cosine schemes (see Supporting
Information table S1 for details). All values were then scaled to the [−1,
1] range using min-max scaling, and encoded into a 14-dimensional
vector (10 scalar properties, and 2 angular properties each stored as sine
and cosine). The MIC values stored in the DBAASP database, having
heterogeneous units, were converted to μmol L−1. Based on a histogram
of activity values over the data set, a threshold activity of 2000 μmol L−1

was selected; higher concentrations were clamped to this threshold,
which was also attributed to AMPs missing an activity for one or more
of the three considered microorganisms. The MIC values were log-
normalized, subjected to min-max scaling, and appended to the
aforementioned feature vectors, whose final dimensionality was thus 17.
The distributions of all 17 normalized properties and activities over the
data set, as well as the correlations between them, are shown on
Supporting Information figures S3−S5.
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Neural Networks

Both conformational data and sequence encodings (tensors consisting
of 500 120-dimensional vectors) were projected into a higher-
dimensional space using two distinct, fully connected layers. A
dimensionality of 432 provided the best trade-off between computa-
tional cost and validation loss in preliminary tests (data not shown) and
was proportional to the number of attention heads that maximized
training efficiency (see below). Positional encodings, providing the
otherwise order-agnostic transformer network with the position of each
element along the amino acid and time sequences, were defined using a
set of learnable parameters. Conformational data, sequence and
position encoding tensors were added and fed to a transformer
encoder, alongside the matching boolean attention masks, as
minibatches of 128 elements. The transformer encoder consisted of 5
stacked subencoder blocks, each comprising a three-headed self-
attention layer (each head tasked with the processing of 144 tensor
dimensions − this choice did not affect the total number of trainable
parameters but maximized training efficiency) and a 2048-dimensional
feedforward subnetwork (using larger hyperparameters did not provide
meaningful performance gains). The transformer encoder output was
an internal representation of the input embeddings, of identical
dimensions to the latter (500 × 432).

The transformer was trained on the reconstruction of missing spans
of the input conformational data. Random spans in the input tensors,
with lengths following a geometric distribution of average length 3 and
representing a total of 15% of the tensor elements, were zeroed out. The
output of the transformer encoder was projected back to the dimension
of the input data (500 × 120) using a fully connected layer. The training
loss consisted in the mean-squared error (MSE) between the original
values of the input tensor at the zeroed-out positions and the
reconstructed output values at these positions.

The property predictor model consisted in a series of fully connected
layers. The first was used to project the transformer encoder output
back to the dimension of the transformer input tensor (500 × 120). The
tensor elements corresponding to padded sequence positions were
subsequently zeroed out. A block of fully connected layers of decreasing
sizes, with ReLU activation functions (several layer depths and sizes
were tried − see Results and Discussion and Supporting Information
figure S7) was then applied and the output tensor flattened. Finaly, a
single fully connected layer with a tanh activation function was used to
generate a 17-dimensional vector in which each element represented
one of the retained properties (see above). The training loss was the
MSE between this prediction and the “ground truth” vector containing
the actual normalized property values. To limit overfitting, a dropout
layer was intercalated before the decreasing-size fully connected layer
block during the training process.

The clustering of the input data set and transformer output was
performed using self-organizing map (SOM) neural networks,29 which
produce unsupervised 2D representations of a data set while preserving
the topological structure of the data. The mapping space consisted of a
grid of neurons, each with a weight vector representing the position of
the neuron in the data set vector space. During training, the weights of
the neurons in the vicinity of each data set vector were adjusted toward
the latter according to a training schedule. A total of 625 neurons,
arranged in a square grid of size 25 × 25, were used: this is in line with
the usual guidelines for this choice based on the data set size and
dimensionality30 and confirmed by comparing quantization and
topographic errors on a series of grid sizes (data not shown). The
neighborhood parameter σ was set to 10, minimizing the values of
quantization and topographic errors (see Results and Discussion).

The clustering of the trained SOM neurons was performed as
follows. The unified distance matrix (UMAT), which represents the
relative Euclidean distance between neuron pairs in training data space,
was computed. Neighboring matrix elements with small values tend to
correspond to clusters, and are delimited by matrix elements of larger
values. To identify the clusters, the connected component approach of
Hamel et al.,31 which connects neurons belonging to a cluster along
maximum gradient directions on the UMAT, was employed.

Software Used
All deep neural networks were implemented using PyTorch.32 The
SOMs were built usingMiniSom.33 Multiple sequence alignments were
performed using ClustalW 2.1 within Biopython 1.8534 and represented
as sequence logos using Logomaker.35 With highly divergent sequences,
alignments can become unreliable and sometimes reveal artifactual
patterns. However, in the present case (i) AMPs are short, (ii) AMPs
within a given cluster tend to have similar lengths, and (iii) introducing
gaps in the alignment was explicitly forbidden. This drastically reduces
the number of possible alignments and the risk of spurious conservation
patterns. Low sequence identity will thus result in a logo with many
small letters and many residue types per position, which denotes low
information content and real sequence variability but is not misleading.
The remaining plots and graphics were generated with Matplotlib.36

■ RESULTS AND DISCUSSION

Choice of Neural Network Model
The transformer model processes data using an attention
mechanism that lets it weigh the importance of each input
element relative to all others (i.e., the context of the input
sequence). It consists of two subnetworks: an encoder, tasked
with converting the input sequence into an internal contextual
representation, and a decoder, which generates the output
sequence (text generation, translation, etc.). Unlike its
predecessor, the recurrent neural network model, which
processes tokens sequentially, the transformer is agnostic to
the ordering of elements in the sequence: it processes input
tokens in parallel and allows for direct connection between any
two elements. This self-attention mechanism thus makes it more
computationally efficient, better at capturing long-range
dependencies, and not as affected by vanishing gradient issues.21

Initially developed for natural language processing,37 the
transformer has been successfully applied to time series
forecasting and classification24 based on the analogy between
elements in a time series and words in a text. However, time
series exhibit unique characteristics: the coexistence of short and
long-term dependencies, multivariate complexity wherein
variables influence one another, noise and nonstationarity that
obfuscate underlying patterns, high dimensionality for long
sequences, irregularly spaced data points...38 Although trans-
former variants have been designed to address these
challenges,39−42 many researchers have shifted the effort from
modifying the transformer architecture to how data is presented
to the transformer43−45 − an approach also adopted here.
Multidimensional Context
The AMP conformational data set (detailed in the Methods
section) consists of multivariate time series (one variable per
amino acid) with context along both time and amino acid
sequence; it can be processed either with channel-independent
or channel-mixing approaches. In the former, the individual
monovariate time series are treated independently. This
approach explicitly disregards any interactions between series
but has proven effective in certain scenarios, mainly due to a low
propensity to overfitting, data volume efficiency, and the
adaptability provided by distinct per-channel attention maps.44

Channel-mixing models, which integrate dependencies among
multiple monovariate series, are potentially able to capture
cross-dimensional interactions. They are conceptually more
complex and computationally less efficient, and while well-
designed models often dominate channel-independent models
from a performance point of view,40,43 they can fail
spectacularly: cases in which a simplistic, channel-independent
linear network was able to outperform a channel-mixing
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transformer on the prediction of multivariate time series have
been documented.46

This paper draws inspiration from the channel-independent
PatchTST approach44 which decomposes each time series into
patches that are fed independently into the transformer. Here,
however, the patches encompass both the sequence and time
dimensions, providing the possibility to detect interdimensional
correlations. A fully learnable position embedding scheme was
used to provide to the transformer the relative position of each
feature vector element along both time and sequence
dimensions. This strategy has been proven superior to the
sinusoidal encodings traditionally used in transformers;45

besides, it limits computational and memory usage while
providing a straightforward approach to channel-mixing and
the potential capture of cross-dimensional context. Similarly to
Zerveas et al.,45 the input data is linearly projected onto a higher-
dimensional vector space before being fed to the transformer,
allowing for greater flexibility in the detection of correlations.
Transformer Training
Tuning pretrained transformers for new tasks is generally much
more efficient than training a new model.47 This work takes this
logic one step further, by building an internal representation of
the conformational dynamics of AMPs which can then be
coupled to distinct downstream subnetworks to perform a wide
variety of tasks. For this, only the encoder part of the transformer
architecture was used: indeed, the transformer decoder
subnetwork was conceived with generative applications in
mind (in the case of time series, forecasting) but is unsuited to
unsupervised tasks such as classification or regression. The reuse
of a pretrained encoder network, pioneered in large language
models such as BERT,37 has been validated for time series by
Zerveas et al.45

The transformer network was trained to autoregressively
regenerate themissing data from input sequences in which spans
of consecutive data have been set to zero (see Methods). For
benchmarking, a fully connected network, operating on the same
conformational data augmented with positional, sequence and
time embeddings as the transformer, was trained for a similar
purpose. The red plots on Figure 1 show the MSE loss for the
reconstructed data as a function of the number of training
epochs.With a 41% lower loss, the superiority of the transformer
is clearly apparent. Whereas the transformer architecture has

been shown not always to be effective for time series forecasting,
sometimes performing significantly worse than a simple fully
connected network,46 in the present case its benefit is plain to
see. This could be due to the relative importance of context in
time series (which is difficult to assess a priori): series with
strong contextual dependencies would benefit much more from
the self-attention mechanism than more stochastic series; the
time-resolved conformational dynamics of AMPs would thus fall
into the former category rather than the latter. However, the
training process is more costly for the transformer, requiring at
least 100 epochs before beating the fully connected network and
around 300 more epochs for converged training to be achieved.
AMP Property Prediction

I now evaluate the performance gain in using the transformer’s
internal representation of conformational space as the training
set of a predictor network, compared to learning directly on the
conformational data itself. To this end, a fully connected
predictor network was grafted onto the transformer output and
was trained to reproduce the properties and antibacterial
activities of the training set AMPs, while keeping the weights of
the transformer frozen to their previously trained values. The
trained predictor’s performance was then compared to that of an
identical predictor network trained directly on the conforma-
tional data. Since many physicochemical properties from
DBAASP have straightforward mathematical definitions and
are more convenient to compute directly than to predict using
machine learning, this should be seen as a validation of the
benefits of the preprocessing of conformational space by the
transformer rather than a goal per se (this does not apply to
antibacterial activities, which can only be measured exper-
imentally and are thus valuable to predict).

As can be seen (blue plots on Figure 1), the trained predictor
network achieves a 14% lower loss when applied to the
transformer output. This demonstrates a tighter link between
the properties of the AMPs and the internal representation
compared to the “raw” conformational data, due to the
incorporation of temporal context within the former. Looking
at the per-property losses (Supporting Information figure S6)
reveals 4 to 10-fold prediction performance boosts for properties
intuitively related to conformational motion, such as the
propensity to in vitro aggregation or PPII coils. Interestingly,
the performance of the fully connected predictor network was
not seen to depend much on the network hyperparameters
(number and size of the neuron layers − see Supporting
Information figure S7). This suggests a relatively straightforward
relationship between the transformer-encoded conformational
data and the AMP properties, that even a modestly sized
predictor network is able to capture.
Classification of AMPs Based on Conformational Dynamics

As previously discussed, the aim of this work is to provide a
reusable, application-agnostic representation of AMP conforma-
tional space, in the form of a transformer encoder designed to
function as a subnetwork within application-specific modular
networks. As an example, I consider the clustering of AMPs
based on their conformational dynamics. Associating AMPswith
labels summarizing their conformational preferences can
usefully complement the typical property and activity data
found in AMP databases and provide an additional criterion for
the selection of AMPs for a given application. To the best of my
knowledge, no database to date provides a classification of
peptide motion − DBAASP, the only peptide database to
provide conformational dynamics data, does so as “raw”

Figure 1. Red plots/left scale: performance of the transformer and fully
connected networks for the reconstruction of missing conformational
data. Blue plots/right scale: performance of the property predictor
network when trained on the conformational data or on the internal
representation of the trained transformer.
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molecular dynamics trajectories which are not directly useable
for classification.

The clustering of AMPs based on their conformational
dynamics was performed using self-organizing maps (SOMs),
applied downstream of the transformer subnetwork. SOMs
efficiently project high-dimensional nonlinear data into an
intuitive-to-view 2Dmap, while preserving the data’s topological
structure (similar high-dimensional vectors stay close together
on the map). An unsupervised learning method, it automatically
detects patterns in the input data, is not restricted to linear
correlations and is robust to noise. To highlight the benefits of
the transformer’s internal representation, I applied SOMs both
to the latter and to the input data set used to train the
transformer.

In both cases, a square map of 25 × 25 neurons (a size chosen
based on adopted criteria48) was used. The neighborhood size σ,
defined as the distance from the winning neuron within which
neuron weights are adjusted during training, was chosen as the
best trade-off between the minimization of quantization error
(how faithfully the SOM represents the input data) and
topological error (how well the SOM preserves the neighbor-
hood relationships of the input data) − see Supporting
Information figure S8. The evolution of both errors with the
number of training epochs was also monitored to validate the
convergence of the SOM (Supporing Information figure S9). As
shown by the topographic error, the trained SOMs were able to
adequately capture the neighborhood relationships both for the
input data and the transformer inner representation; however,
the quantization error was 55% higher for the former, denoting
an inability to faithfully transcribe the input data set. This can
further be seen on the quality maps, which show how well a
neuron in the 2D grid represents the data mapped to it (Figure 2,
left panel). The transformer representation exhaustively maps
2D space, with low errors and few neurons left unused. On the

other hand, the SOM concentrates all input data into a small
proportion of the available neurons, leaving most neurons
unused; understandably, the heterogeneity of conformations
assigned to a neuron results in high errors. This proves that the
transformer was able to disentangle complex trends in the input
data, which the downstream SOM then has no difficulty picking;
it also shows that these trends are complex enough not to be
directly captured by a SOM, despite this model’s proven
performance on high-dimensional data sets featuring nonlinear
correlations.

To identify clusters on the SOM array, connected
components of SOM neurons were built based on the gradient
information in the unified distance matrix (UMAT), as
described by Hamel et al.31 The UMAT, which shows distances
between neighboring neurons, is represented on the right panel
of Figure 2; on it are superimposed the identified clusters as
starbursts. A total of 32 clusters, corresponding to 32 distinct
classes of conformational motion in AMPs and with rather
homogeneous populations, were found.

To relate conformational dynamics to properties more
traditionally used in AMP databases, statistics of physicochem-
ical properties and antimicrobial activities of the AMPs lumped
into each SOMcluster were calculated (see Figure 3): a property
will be strongly correlated with conformational motion if its
distributions show important variations among clusters of
conformational dynamics. Unsurprisingly, this is the case for
disordered conformation propensity, propensity to PPII coil and
propensity to in vitro aggregation, which are by their definition
directly linked to conformational motion. The amphiphilicity
index and the linear moment, both related to the distribution of
hydrophobic and hydrophilic amino acids along the peptide
chain, also show sizable variations between clusters. Clearly, the
accumulation of hydrophobic or hydrophilic residues at the
peptide termini (as observed in amphipatic peptides) results in
conformational dynamics that strongly differ from that of
peptides in which both types of residues are evenly distributed
along the chain. Interestingly, the hydrophobic moment is much
more homogeneous among clusters, showing that the spatial
repartition of residue types on either side of a helix influences
conformational dynamics much less than their linear repartition
along the amino acid sequence. Tilt angle and penetration depth
distributions among clusters are also quite similar, which shows
that most AMPs can penetrate membranes regardless of their
conformational dynamics − presumably using different
mechanisms depending on their amphiphilicity. Finally, for
most properties, the transitions between distributions for
neighboring clusters are generally rather progressive: this hints
at a global correlation in which the similarity between
neighboring SOM clusters is carried over to the underlying
properties.

For antimicrobial activities, the picture is more complex:
activities on P. aeruginosa strongly differ between clusters,
whereas activities on S. aureus are homogeneous; E. coli strikes a
middle ground. This denotes that an indirect recognition
mechanism exists between the P. aeruginosa membrane and
AMPs, governed by an enhanced selectivity for the conforma-
tional dynamics of the latter; conversely, the permeation of the S.
aureus membrane is conditioned by direct recognition of AMP
sequences and/or physicochemical properties. The opposed
Gram stains of both bacteria, and the associated differences in
membrane architecture, are likely to explain these diverging
recognition mechanisms. E. coli is Gram-negative like P.
aeruginosa, but the latter’s outer membrane has several unique

Figure 2. Left: quality maps (mean quantization error per neuron) for
the SOM clustering of the input data set (input, top) and the
transformer’s representation thereof (output, bottom) after training
(lower is better, see text for details). Neurons which are not winning
neurons for any data set sample are left blank. Right: unified distance
matrix (UMAT) for the SOM trained on the transformer internal
representation. Contiguous neurons with low distances form clusters;
their centers and extents are materialized as starbursts, colored
according to the population of the corresponding cluster.
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features (longer and more highly charged core oligosacchar-
ides,49 prevalence of penta-acylated lipid A,50 fewer porins51)
that make it notoriously more resistant to antibiotics.52 From the
present results, a highly selective membranotropicity toward
AMPs featuring certain classes of collective motion can be added
to the list of specificities explaining P. aeruginosa’s superior
resistance capabilities.

Figure 4 shows the correlation (as the absolute value of
Pearson’s coefficient) between the distributions of the average

values of physicochemical and antimicrobial properties among
SOM neurons − in simple terms, the pairwise similarities
between the Figure 3 subplots. Amphiphilicity index, isoelectric
point and linear moment all feature high correlation with one
another, demonstrating that they all similarly influence AMP
conformational dynamics. The screening of AMPs for a given
application, especially one where conformational dynamics is

suspected to play an important role (such as the targeting of P.
aeruginosa), can be facilitated by retaining only one of these
properties in the selection filter. Similarly, the propensity of
disordered conformations is also highly correlated with
normalized hydrophobicity and amphiphilicity index as far as
conformational dynamics are concerned. The rest of the
properties show no significant correlation with one another
and are thus best kept as independent descriptors. Similarly, the
per-cluster distributions of antibacterial activities do not feature
marked correlations with any of the distributions of
physicochemical properties, confirming that the relationship
between conformational motion and activity exists but is quite
complex. Interestingly, although the distribution of activities
against S. aureus in the SOM clusters is rather homogeneous, it
displays some correlation with the much more marked
distribution of activities against P. aeruginosa, denoting a limited
form of common indirect recognition of AMPs from the two
species despite the differences in their membrane constitutions
− AMPs active against one of these bacteria could potentially
hold promise against the other.

Finally, I relate the 32 classes of conformational dynamics to
the amino acid sequences of the corresponding AMPs. The
sequence logos for a selection of representative clusters are
shown on Figure 5 (the logos for all clusters are provided on
Supporting Information figure S10) − please see the Methods
section for a critical assessment of the alignment of highly
divergent sequences in some clusters. The first observation is
that AMP sequence length is a determinant factor of
conformational motion: the median length varies a lot from
cluster to cluster and the standard deviation of sequence lengths
within a cluster is generally quite small (see Supporting
Information figure S10). Clusters of comparable AMP lengths
also tend to occupy neighboring positions on the SOM map,
which shows that sequence length plays an important role in the
global topology of the AMP conformational dynamics hyper-
space. Second, many clusters are characterized by conserved
sequence motifs: this is especially clear for clusters 12 and 27
(whose respective populations of 384 and 99 are sufficiently
large to ensure statistical significance). Proline-rich AMPs have
unique dynamic properties and are thus segregated in their own

Figure 3. Deviation of the average values of normalized physicochemical properties (left panel) and antimicrobial activities (right panel) of AMPs
attributed to each cluster, from the corresponding averages over the entire data set, in units of standard deviation σ. Abbreviations: amphiphil ↔
amphiphilicity, ind ↔ index, isoelectr ↔ isoelectric, pt ↔ point, mt ↔ moment, norm ↔ normalized, hydrophob ↔ hydrophobic/hydrophobicity,
penetr ↔ penetration, prop ↔ propensity, aggr ↔ aggregation, res ↔ residues.

Figure 4. Pairwise similarities between the distributions of the average
values of physicochemical properties and antimicrobial activities in
SOM neurons, measured as the absolute value of the Pearson
correlation coefficient between the corresponding distributions.
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cluster 11; similarly, cysteine-containing peptides are concen-
trated in cluster 19. Spans of repeating KKLmotifs also appear to
induce specific conformational motion; they appear prom-
inently in several clusters of different median AMP lengths (e.g.,
cluster 17 for AMPs of length 21−25). Glycine also features
prominently at specific positions along the sequence in some
clusters (15 for long AMPs, 27 for midsized ones), in particular
in the terminal regions; in cluster 27, glycines appear to
modulate the effect of KKL motifs. Similarly, arginine-rich
peptides apparently have their own conformational behavior;
interestingly, in the corresponding clusters (e.g., cluster 12),
hydrophobic tryptophan residues and arginines appear inter-
changeable (in terms of probability of occurrence) at several
positions without seemingly affecting conformational motion.
Finally, negatively charged amino acids (mostly aspartic acid),
though less frequent, are encountered with good probability at
certain positions in select clusters (e.g., cluster 15), in which
polar uncharged residues (serine, asparagine) can also be found.
Combining Existing AMP Databases and Conformational
Dynamics Classes
Using conformational dynamics as an additional criterion to
filter AMP databases carries a strong incentive for the design of
novel AMPs against specific microbial targets. As an example, I
provide in Supporting Information a detailed account of the
combination of the ADAPTABLE AMP database8 with the
conformational dynamics classes from this work for the
suggestion of putative lead AMPs against Shigella sp, and
summarize the main findings below.

First, the distribution of the majority of AMPs active against
this genus in very few SOM classes demonstrates a strong
relationship between plasticity and activity, as observed above
for P. aeruginosa. Second, the nonuniformity of this distribution
can be exploited for the efficient pruning of the ADAPTABLE
database − either by only considering as lead candidates the
AMPs from the most populated SOM classes, or on the contrary
by sampling all classes, selecting a small number of
representative AMPs for each. Finally, the examination of
consensus sequences within the classes provides three possible
paths toward the design of candidate AMPs: (i) recommend
known AMPs with suitable dynamics that have not yet been
tested on the target; (ii) isolate minimal motifs with distinct
plasticity from longer AMPs, to be used as templates to design
new peptides; (iii) suggest novel AMPs that, although chimeric
and untested, have both the desired conformational behavior

and high sequence identity to existing AMPs active on other
bacterial targets. Naturally, the actual activities of these
candidates on Shigella would need to be experimentally tested
(which is planned shortly in our lab for cancer-targeting AMPs);
until they are, the general guidelines inferred from this example
carry more weight than the exact AMP sequences involved.
Nonetheless, the trends within and between classes of
conformational dynamics and the relationship between activity
and motion observed in this work leave little doubt as to the
usefulness of augmenting existing AMP databases with
conformational data.

■ CONCLUDING REMARKS
The importance of conformational dynamics in biomolecular
recognition has been acknowledged for a long time, but its
practical use within drug design pipelines has remained
anecdotical. Advances in the application of LLM methods to
time series could help resolve this paradox by addressing the
infamous intractability of raw conformational data. The
unsupervised learning of a classification of AMP dynamics,
described herein, is a valuable example. Ideally, a definitive
classification would benefit from being trained on many more
AMPs (less than 40% of peptides in DBAASP have standardized
MD simulation trajectories) and longer simulations; this would
involve a sizable computational effort but would not constitute a
major conceptual roadblock. Other conformational dynamics-
related time series could possibly also be incorporated into the
data set without negatively impacting the performance-to-
computational cost ratio or causing overfitting. Finally, new
developments in transformer networks should also be
monitored on a regular basis to take advantage of the rapid
advances in the field, notably for the better treatment of long-
range and multiscale correlations. We will be investigating these
three points in view of the future inclusion of conformational
criteria into our ADAPTABLE database. In the meantime, the
inner representation of conformational space learned by the
transformer will be leveraged on other tasks, by coupling it to ad
hoc downstream networks: for instance, for the prediction of the
conformational motion of peptides and the design of collective
variables to efficiently explore conformational space within
enhanced sampling MD simulations.

Figure 5. Amino acid sequence logos of AMPs belonging to a selection of clusters on the SOM map (denoted by arrows). The logos use the color
scheme of Najafabadi et al.53 The SOM clusters are colored according to the median sequence length of their associated AMPs. The integer indices
identifying the clusters on the map are also used to refer to them in the article text.
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■ ASSOCIATED CONTENT
Data Availability Statement

For purposes of reproducibility, data sets of encoded AMP
conformations, properties and activities, source code and trained
network parameters are available for download at https://sdrive.
cnrs.fr/s/sXR5wzbCF8YAsXd (uncompressed data size: 12
GiB).
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for the properties data set and distributions and
correlations thereof; distribution of data set AMP lengths;
schematic representation of input tensors; validation of
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acid sequences within all classes of AMP conformational
dynamics. Example of the combination of an existing
AMP database and said classes for the design of novel
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