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ABSTRACT: Protein−protein complexes power the majority of cellular
processes. Interfering with the formation of such complexes using well-designed
mimics is a difficult, yet actively pursued, research endeavor. Due to the limited
availability of results on the conformational preferences of oligosaccharides
compared to polypeptides, the former have been much less explored than the
latter as protein mimics, despite interesting ADMET characteristics. In this
work, the conformational landscapes of a series of 956 substituted
glucopyranose oligomers of lengths 3 to 12 designed as protein interface
mimics are revealed using microsecond-time-scale, enhanced-sampling molec-
ular dynamics simulations. Deep convolutional networks are trained on these
large conformational ensembles, to predict the stability of longer oligosaccharide
structures from those of their constituent trimer motifs. Deep generative
adversarial networks are then designed to suggest plausible conformations for
oligosaccharide mimics of arbitrary length and substituent sequences that can subsequently be used as input to docking simulations.
Analyzing the performance of the neural networks also yields insights into the intricate collective effects that dominate
oligosaccharide conformational dynamics.

■ INTRODUCTION
Protein−protein (PP) complexes power the majority of cellular
processes and have thus long since been recognized for their
potential as drug targets. By competing with native protein
partners for recognition and binding, a well-designed mimic can
potentially inhibit or regulate the formation of a PP complex and
the associated biological function.1 However, this endeavor is
much more challenging than the design of traditional drugs,
designed to fit inside a binding pocket of known size, shape, and
chemical character and interact with a handful of well-defined
amino acids only: PP interfaces are usually extensive (involving
tens or hundreds of amino acids of varying chemical nature) and
predominantly comprise large, flat patches. Alanine-scan
experiments have revealed that only a few clusters of amino
acids, often termed hotspots, contribute significantly to the
binding free energy and thus represent prime drug targets.2

These hotspots usually correlate with marked evolutionary
conservation and isolation from water in the native complex.3

Recently, more subtle hotspot features have been captured using
machine learning, furthering the ability to predict hotspots at PP
interfaces without resorting to long and costly scanning
experiments.4−6

Binding to a PP interface both strongly and specifically
requires making simultaneous contacts with several hotspots of
different chemical characters and forming a determined pattern
in space. In the native protein partner, this is achieved with
complementary amino acids conformationally constrained by
the protein fold. Indeed, a mimic molecule sufficiently large to

simultaneously target multiple hotspots would probably lack the
required conformational rigidity: for instance, peptides have
been extensively applied as mimics of protein partners targeting
PP interfaces but need to be conformationally constrained using
scaffolding groups.7 However, because PP interfaces are
typically much flatter than active sites, the need for conforma-
tional rigidity in mimics is not as drastic, which allows some
latitude in the mimic design process and is advantageous from
the entropic point of view.
Oligosaccharides, the long forgotten third class of biomacro-

molecules, are coming of age as interesting alternatives to
peptides for the design of PP interface mimics: chitosan
derivatives,8 sugar foldamers,9 sugar amino acids,10 leptin-based
oligopeptides,11 glycopeptide−antibody chimeras,12 and glyco-
sated dendrimers13 have all demonstrated their value as
modulators of PP interfaces. Oligosaccharides can be obtained
from naturally occurring polymers (chitin, cellulose, starch...)
and are more rigid than peptides of similar sizes due to the
cyclicity of their monomer constituents. Additionally, they avoid
some of the unfavorable ADMET profiles of polypeptides (self-
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aggregation, proteolysis, immune response). The synthesis and
purification of carbohydrates have long represented a bottleneck
to their widespread adoption, especially for industrial
applications. Indeed, synthetic pathways leading to oligosac-
charides have had to be painstakingly designed to ensure the
specificity of each monomer addition, usually by adding several
protecting/leaving group steps (and the associated separation
and purification tasks) between each chain extension phase.
Fortunately, the development of automated synthesis tech-
nologies14 now provides rapid access to a wide variety of
oligosaccharides, allowing the screening of such compounds for
drug discovery.15 These methodological developments have also
helped to bolster the bioavailability of oligosaccharide drugs
(one of their long-standing limitations) by reducing the
compounds to their smallest active components or by
combining them with other molecules. Arixtra, auranofin,
zanamivir, topiramate, acarbose, Elmiron, sulodexide, fucoidan,
idrabiotaparinux, and fondaparinux are all highly bioavailable
intravenously, while other drugs such as pentosan polysulfate
can be orally delivered.16 Interstingly, carbohydrate peptidomi-
metics often show superior bioavailability compared to the
peptides they emulate, whose amide backbone makes them less
permeable to membranes.17 Notwithstanding other challenges
(such as the rapid clearance by the organism), oligosaccharides
now appear as compelling drug scaffolds.
Selecting a potentially suitable functionalized oligosaccharide

mimic to target a given PP interface requires understanding the
impact of the oligomer length and the nature of its substituent
groups on its conformational preference. While globular
proteins, in which interresidue hydrogen bonds impose
secondary and tertiary structures, can be described by a single
fold, polysaccharide hydrogen bonds tend to be displaced by
water and have a less stringent effect on the overall conforma-
tional preference. Oligosaccharides are thus best described as
weighted conformational ensembles, making these molecules
less amenable than proteins to experimental structural
methods.18 Fortunately, this issue has been partly alleviated by
successfully combining molecular dynamics (MD) with NMR
experiments;19 the conformational information garnered by
such studies has progressively been compiled into structural
oligosaccharide databases, initiated with GlycoMapsDB in
200720 and continuing to this day. However, most databases
map conformational space with only two dihedral angles per
glycosidic linkage21 (neglecting pyranose degrees of freedom),
and even the most recent22 only contains a total of 2598 distinct
conformational maps.
Predicting the conformational preference of oligosaccharides

from their structural formulas is thus highly desirable, for
applications ranging from the fundamental understanding of
oligosaccharide conformational space topologies to the practical
design of chemobiological drugs. For the latter application, the
possible differences between the free and protein-bound
conformations of an oligosaccharide mimic (which depend on
the nature of the partners) is not detrimental: the first steps of
the recognition between partners typically occur at sufficiently
large distances for the knowledge of the free mimic conforma-
tional preferences to remain meaningful.23 In this paper, I use
long-time-scale (total simulation time ≈ 4 ms), enhanced-
sampling molecular dynamics simulations to extensively
characterize the conformational free energy landscape of α-1,
4 glucopyranose oligomers of three different lengths (trimers,
hexamers, and dodecamers) substituted with 8 possible
moieties. I design a recursive convolutional deep learning

network, trained on this extensive data set, to predict the stability
of any given conformation of an oligomer of given length and
substitution and examine whether this information can be
inferred from the stability of its constituent trisaccharide motifs.
Finally, a generative adversarial network is introduced to suggest
stable conformations for arbitrary oligomers; it can be used as a
source of potential PP interface mimics, for instance to power
subsequent high-throughput protein-mimic docking simula-
tions.

■ METHODS
Molecular Simulations. The force field parameters for the

oligosaccharide mimics were derived from the GLYCAM24 and
GAFF25 force fields; the atomic charges for the subtituents were
obtained using the RESP procedure.26 The oligomers were
assembled from the corresponding parametrized fragments
using LEaP27 and ACPYPE28 (see Supporting Information for
details).
The trimer, hexamer, and dodecamer systems wereminimized

and equilibrated using the procedure described in the
Supporting Information. They were simulated for respectively
1, 1, and 1.5 μs at 300 K and 1 bar; conformations were recorded
every 10 ps. Dihedral principal component analyses (dPCAs),29

including all dihedral angles involving non-hydrogen atoms,
were performed on these production trajectories. The first two
dPCA eigenmodes (as ranked by contribution to variance) were
used as collective variables to monitor and enhance conforma-
tional sampling. Well-tempered metadynamics simulations30 of
2, 4, and 6 μs were performed along these two variables for
trimers, hexamers, and dodecamers, respectively. Frames were
extracted every 10 ps for all simulations for subsequent analysis.
The free energy landscape of each oligomer was obtained as a
function of the collective variables from the sum of the Gaussian
biasing potentials accumulated during the simulations; its
convergence with respect to simulation length was verified
(see Supporting Information). Molecular dynamics simulations
were performed using GROMACS 2021.231 and PLUMED
2.5;32 a dPCA module was implemented inside PLUMED
specifically for this study.

Deep Learning.An adequate encoding of data set exemplars
is crucial to the performance of deep learning methods. In this
work, dihedral angles were encoded as their sine and cosine
values, which is a straightforward way of implementing angle
periodicity into the networks but requires two input nodes per
angle. Each monomer comprises 18 angles (13 for the sugar, 2
for the linker, and 3 spanning sugar and linker), while 2
consecutive monomers are linked by 6 angles. The 8 possible
monomer substituent types (see Figure 1) were mapped to
integer values between 0 and 7 and encoded into an 8-
dimensional latent space vector using embedding nodes. Thus, a
conformation of an oligosaccharide of length n was input to the
classifier networks as a vector of dimension n × (8 + 2× 18) + (n
− 1) × 2 × 6. The free energy of each conformation was
obtained by interpolating over the relevant free energy surface
based on the values of the projections on the dPCA eigenvectors.
Conformations with free energy values lower or equal to 2.5 kcal
mol−1 relative to the global minimum, which form the attraction
basins of the main nonmetastable minima on the free energy
surfaces (see Results and Discussion), were labeled as the
positive samples of the data set; the remaining conformations
were labeled as negatives. A conformation was considered to be
predicted positive by the classifier networks if the output of the
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final sigmoid node belonged to the [0.5,1] range, negative
otherwise.
The data set populations were as follows: 102 400 512

conformations for trimers, 147 600 369 for hexamers,
45 375 075 for dodecamers, and 96 976 131 for the mixed set
(consisting of trimers, hexamers, and dodecamers in equal
proportions). These data sets were randomly partitioned
between training and test set according to a 75/25 ratio. All
networks used the binary cross-entropy loss function and
AdamW optimizer,33 with learning rates ramping down from 0.1
to 1.0× 10−4 as training convergence proceeded and a decay rate
of 1 × 10−4. All neural networks were implemented using

PyTorch.34 Additional, nondeep learning tasks (decision trees,
random forests, and ADABoost classifications) were performed
using Scikit-Learn.35

■ RESULTS AND DISCUSSION
Free Energy Landscapes of Oligosaccharides from

Enhanced-Sampling Simulations. The oligosaccharide
mimics were built from substituted glucopyranose monomers
assembled along α-1, 4 bonds. Position 6 on each monomer was
subtituted with a 4-carbon ester linker bearing one of eight
possible groups. These were chosen as synthetically amenable
isosteres of the different types of amino acid side chains
(charged, polar neutral, H-bonding, aromatic, aliphatic, bulky).
A glucopyranose substituent was also included to allow the
potential reticulation of oligomers (Figure 1). All 512 possible
trimer combinations of these 8 monomers were constructed.
The number of possible combinations for longer oligosacchar-
ides makes it computationally intractable to simulate them all on
the microsecond time scale. Thus, a subset of 369 hexamers and
75 dodecamers, with equal representations of all 8 substituents
and featuring possibly important patterns (repetitions of 2 and 3
identical substituents), were handpicked for simulation. All
selected oligosaccharides were simulated for at least 1 μs, and
the resulting trajectories were subjected to dPCA analysis. The
first two eigenmodes for each oligomer were used as collective
variables in metadynamics simulations of up to 6 μs, revealing
the conformational free energy landscapes of the oligomers (see
Methods for details).

Figure 1. Markush structures of the mimics under study. Left:
glucopyranose monomer template; an ester linker connects position 6
on the glucopyranose ring to 1 of 8 possible functional groups (right
panel). Consecutive monomers are linked via α-1, 4 glycodidic bonds.

Figure 2. Left: free energy surface of an example trisaccharide (substituent sequence COO−-Phe-Glc) along the two first dPCA eigenmodes, showing
the different types of minima in terms of stability (ΔG to the lowest minimum) and persistence (local relevance) as well as cartoons of the
corresponding conformations (the centroids of glucopyranose rings, linker and substituent are respectively colored pink, cyan and purple). Upper
right: normalized values of stability and persistence averaged over the minima of each trisaccharide, showing the division into three clusters. Lower
right: enrichment or depletion of the three clusters in the different substituent types.
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The free energy minima on all trimer surfaces were identified
and classified in terms of stability (free energy difference to the
lowest minimum) and topological persistence36 (relevance of
the minimum compared to neighboring ones, evaluated by the
height of the barrier separating them: considering a “water level”
continuously rising on the free energy surface, how long would it
take for both minima to belong to the same “lake”? See
Supporting Information for details). Figure 2 shows that the
minima can be classified into three clusters with respect to these
two measures. (i) Low-energy and high-persistence minima are
the representatives of the main attraction basins on the surface;
they are often surrounded, within each basin, by (ii) numerous
other minima of similarly low energies but low persistence (low
energy barriers to neighboring minima). Finally, (iii) high-
energy regions also feature local minima; they usually
correspond to metastable states delimited by low free energy
barriers and thus have low persistence.
Computing the average minimum stability and persistence for

each trisaccharide reveals substituent-dependent trends (Figure
2). Small, charged, and/or H-bonding groups (OH, COO−,
NH3+) create strong interactions with very specific geometries;
trimers bearing such groups tend to have a large number of
highly stable, well-separated (highly persistent) minima (green
cluster on Figure 2). Interestingly, bulky adamantane groups
also tend to generate such well-defined minima but simulta-
neously favor high-energy, low-persistence metastable minima
(orange cluster). This is the signature of van der Waals
interactions: very crowded oligosaccharides with several
adamantane groups have specific minima separated by high
barriers which sample the strongly repulsive part of the Lennard-
Jones potential; on the other hand, in less constrained trimers,
adamantane interacts weakly via the dispersive part of the
Lennard-Jones potential, resulting in low free energy barriers
and shallow minima. Finally, trimers with aromatic groups tend
to present extensive attraction basins containing multiple
minima separated by low free energy barriers (low ΔG, low
persistence − blue cluster): due to limited steric effects and
interaction strengths, such systems are less conformationally
constrained. Surprisingly, trimers bearing glucose substituents
tend to behave similarly despite the bulk and hydrogen-bonding
capacities of the latter; this could be due to the coexistence of

multiple simultaneous interactions, not all of which need to
break when transitioning from a local minimum to its close-lying
neighbor on the free energy surface. Examples of trimer free
energy surfaces representing these various cases are provided in
Supporting Information Figure S2. Because the dPCA
eigenvectors are a complex mixture of individual angles,
translating the relative positions of the minima on the free
energy surface in terms of conformational differences is difficult,
except for very close-lying local minima within a superbasin,
which do tend to show a degree of similarity. This can be verified
from the local minimum structures on Figure 2: the only
detectable trend is a loose correlation of the first eigenvector
with trimer compacity. Furthermore, the eigenvectors vary
considerably from one trimer to the next (the average inner
product between eigenvectors of distinct trimers is 0.32 ± 0.12
for the first eigenvector and 0.31 ± 0.13 for the second); the 2D
free energy surfaces thus originate from completely different
“slices” of conformational space, making the comparison
between surfaces rather futile. These considerations are
excellent arguments in favor of using neural networks to derive
simplified models of the free energy landscapes: their “black
box” nature is not really a drawback when applied to such an
abstract data set.
Figure 3 compares the free energy surfaces of trimers to those

of hexamers and dodecamers in terms ofΔG and persistence. As
previously observed on Figure 2, the distribution of ΔG values
for trimers is bimodal: predominant minima within the main
attraction basins are located less than 2 kcal mol−1 above the
global minimum, while metastable states are centered around 5
kcal mol−1. The range of populated persistence values
(discounting the global minima, which by definition have a
persistence of 255− see Supporting Information) extends above
100, suggesting multiple, distinct, very stable local minima.
When the oligomer length increases, the free energy surfaces
become more complex; individual minima tend to fuse into
larger attraction basins, shifting the distribution of persistences
toward lower values. Similarly, the distributions ofΔG values for
longer oligomers progressively lose the bimodality seen in
trimers; this is especially apparent for dodecamers, which also
feature a much larger proportion of metastable minima. This can
be ascribed to the much higher number of possible

Figure 3. Histograms of the relative stability (left) and persistence (right) of all trimer, hexamer, and dodecamer minima.
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combinations of simultaneous interactions in such larger
systems.

Learning Trisaccharide Conformational Preferences.
This initial comparison suggests a complex evolution of the
oligosaccharide free energy surfaces when moving from trimers
to longer oligomers. Will deep learning methods, known to
reliably capture complex trends, reveal collective effects linking
the dynamics of larger mimics to that of their smaller
constituents? To test this hypothesis, a neural network (termed
“trimer classifier”) was built and trained to predict whether a
trimer of given conformation and substituent sequence is stable
(i.e., located in a zone of low relative free energy surrounding
one or multiple local minima on the free energy surface). If this
network can achieve sufficient performance, multiple instances
of it could possibly be combined to predict the stability of longer
isomer conformations, based on the sequences of their
constitutive trimer patterns.
The trimer classifier network has a fully connected

architecture which is represented on Figure 4. The input layer

comprises 156 input nodes, consisting of (i) embedding nodes
which encode the nature of each substituent on the trimer into
an 8-dimensional latent space; (ii) fully connected input nodes
which hold the sine and cosine values of all relevant dihedral
angles of the trimer (see Methods for details). The 156-
dimensional vector representing a trimer is passed through 6
fully connected neuron layers with nonlinear ReLU activation
functions. The final sigmoid function constrains the output of
the network to the ]0, 1[ range, interpreted as the probability of
the input trimer to be representative of a low-lying free energy
minimum.
The network was trained for 500 epochs on a training set of

∼77 million conformations from the metadynamics simulations
of all possible trimers and tested on a separate test set of ∼26
million conformations (see Methods for details). The learning
process converged within 300 epochs (see Supporting
Information) and achieved near-perfect predictions on the test
set (sensitivity 0.96, specificity 0.98, precision 0.97, accuracy
0.97, F1 score 0.96). The network was thus successful in

capturing the substituent-induced variety of free energy surface
topologies and achieving predictive power on unlearnt samples.
Beyond the topology of the network itself, the quality of the
training set plays a crucial role: the enhanced-sampling
simulations performed in this work provide a more thorough
description of conformational space and more accurate free
energy estimates (especially for less-populated minima) than
Boltzmann-statistics simulations of equivalent computational
cost.

Onward to Longer Oligomers: Learning Collective
Effects.To investigate the existence of possible collective effects
in longer oligosaccharide mimics, I then examined whether a
relationship could be found between the status of a hexamer or
dodecamer conformation as a minimum and the corresponding
status of its constituent trimers. These trimers are defined by
sliding a window encompassing 3 sugar units over the
oligosaccharide with a stride of 1 unit; an oligomer of length n
thus comprises n − 3 + 1 individual trimers. For hexamers, a
simple decision tree based on the predictions of the 4
constituent trimers as minima or nonminima by the classifier
network did not achieve an acceptable performance (F1 = 0.67).
In particular, 58% of conformations predicted as minima were
false positives; the prediction of negatives fared somewhat better
(23% of false negatives). More complex methods, using the
continuous probability output from the trimer classifier network
rather than the binary mininum/nonminimum classification
derived from it, did not provide better results: the ADABoost
method yielded 66% of false positives and 24% of false negatives
for both test and training sets (F1 ≈ 0.6); a random forest of 10
decision trees yielded a near-perfect classification of the training
set (false predictions <1%, F1 = 0.98) but achieved this result
using very large trees with nearly as many leaves as data points
and proved incapable of categorizing the test set (45% false
positives, 48% false negatives, F1 = 0.47). For dodecamers,
predictions were strongly biased toward false negatives: a simple
decision tree on the binary predictions of the 10 constitutive
trimers yielded 99% of structures predicted as nonminima;
ADABoost on the continuous probabilities output by the trimer
classifier yielded similar results for both training and test sets,
and a random forest reproduced the training set perfectly but
predicted 98% of test set samples as nonminima regardless of
their true nature.
From these performances, which are worse or barely better

than those of a random classifier, it appears that trisaccharides
bonded together within a larger oligomer retain no memory of
their individual conformational preferences. While strong
collective effects were expected, the extent of their domination
of the conformational space of oligomers is striking. The
occurrence of folded conformations in longer oligomers, driven
by intramolecular interactions between monomers that are
distant along the chain but spatially close, is a typical information
that cannot be inferred from the conformations of isolated
trimers; however, the respective over- and underprediction of
hexamer and dodecamer minima suggest that additional, more
complex collective effects on different scales of polymer length
might actually coexist. These results are in line with those of
previous conformational studies of polysaccharides (relatively
scarce considering the importance of these polymers as natural
products). In 2002, Rosen et al.37 failed to correlate the
preferred conformations of oligosaccharides with those of the
pentasaccharide repeating motifs on which they were built;
however, their work did not include intrasaccharide degrees of
freedom and defined stable conformations as MM3 potential

Figure 4. Fully connected classifier network used to learn and predict
whether a trisaccharide of given conformation and substituent sequence
belongs to a stability basin on the corresponding free energy surface.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00179
J. Chem. Inf. Model. 2024, 64, 2195−2204

2199

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00179/suppl_file/ci3c00179_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00179/suppl_file/ci3c00179_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00179?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00179?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00179?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00179?fig=fig4&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00179?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


energy minima, neglecting entropic effects which are essential in
flexible oligomers. Two decades later, a state-of-the-art study by
Watanabe et al.38 mapped the conformational ensembles of
high-mannose-type oligosaccharides obtained from MD simu-
lations by projecting their ∼100 major internal degrees of
freedom into a kernel Hilbert space of dimensions up to 4 and
grouped their free energy minima into 21 clusters; however,
within each cluster, major differences in monomer ring
puckering states, glycosidic linkages, interresidue hydrogen
bonds, and end-to-end distances remained�a testimony to how
little the understanding of collective effects in oligosaccharides
has really progressed in 20 years.
Convolutional deep neural networks are efficient detectors of

multiscale collective patterns. These networks, popularized by
their ability to identify objects in real-life images regardless of
their scale and position, are now applied to data sets of very
diverse types and origins.39 They typically contain a sequence of
convolutional layers of decreasing dimensions. Convolutional
layers operate within a window of chosen size, which is slid over
the input vector with a chosen stride. Input data contained inside
the window are convoluted by a number of teachable
convolution kernels, which react to collective input patterns
spanned by the window. The output dimensionality depends on
the number of possible window positions but is typically smaller
than the input dimension. Pooling layers can also be used to
decrease this dimensionality, by averaging or taking the
maximum value of inputs inside the window. Each layer
aggregates and convolutes the outputs of the previous one
using its own sliding window: as information flows along the
network and the dimensionality of the layers progressively
decreases, the layers thus achieve a synthetic view of increasingly
long spans of the original input vector, and the patterns they
detect become more and more global.
The concept of convolutional networks appears perfectly

suited to the identification of potentially multiscale collective

effects in the conformational spaces of oligosaccharides. For
instance, by using a window length of 3 and a stride of 1, the
previous assumption of basing the conformational behavior of
oligosaccharides on that of their constituent trimers can be
replicated. However, unlike the previously performed simple
aggregation of each trimer’s likelihood as a minimum, the
recursive convolution of individual trimer patterns operated by
the successive layers allows the detection of complex collective
patterns spanning the length of the entire oligosaccharide chain;
these include, in longer oligomers, the occurrence of folded
conformations stabilized by intramolecular interactions.
However, unlike most data sets where all entries are

represented by fixed-size vectors, oligomers of varying length
are encoded with varying dimensionalities, which conditions
both the size of the network input layer and the number of
convolutional/pooling steps required to bring down the
dimensionality. To tackle this issue, the convolutional network
designed in this work was built around recursive components
(Figure 5). The input stage consists of two distinct sets of fully
connected layers, respectively taking as input the dihedral angles
of a monomer (sugar and substituent) and a connector (angles
involving atoms connecting two consecutive sugars). These
subnetworks are called as many times as needed depending on
the polymer length N, and their outputs concatenated into a
vector of size lN. The latter is fed into a recursive convolutional
subnetwork, featuring two convolutional layers which reduce the
width of the data flow from li to li−1 at each iteration. This
subnetwork is recursively called N − 2 times, until its output
reaches size l2. At this point, a fully connected subnetwork is
applied, which outputs the probability for the input
conformation to be a free energy minimum. Because (i) all
monomers share the same fully connected modules regardless of
their position in their containing oligomer and the length of the
latter and (ii) because patterns in longer oligomers are detected
by calling the same convolutional subnetwork multiple times,

Figure 5. Recursive convolutional classifier network, designed to predict whether an oligosaccharide of given length, substituent sequence, and
conformation belongs to a free energy minimum basin. The kernel size and stride values for the two layers of the recursive convolutional module are
(lmono + lconn, 1) and (2, 1).
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the network is never aware of the size of the oligomers it is being
trained on. This prevents it from taking the “easy way out” of
learning trends that are specific to an oligomer length; instead, it
is forced to find more global patterns, which should enable it to
better extrapolate to oligomer length it has not been trained
upon.
The recursive convolutional network was trained for 600

epochs on a mixed set of ∼73 million trimer, hexamer, and
dodecamer conformations in equal proportions (see Methods).
The training convergence was reached within 250 epochs (see
Supporting Information). Interestingly, the trained network
performed much better on hexamers and dodecamers than on
trimers: the global F1 score of 0.90 can be decomposed into
respective scores of 0.96, 0.92, and 0.83 for these three oligomer
lengths. The prediction of trimers performs well in terms of
specificity and accuracy but less so in terms of sensitivity and
precision. This is caused by true positive and false negative
prediction rates which are respectively low and high compared
to true negatives and false positives: the network tends to predict
as nonminima trimer structures which are actually minima.
While not optimal, in practical use, this is preferable to flagging
as minima conformations which are not. Hexamer and
dodecamer minima are very well-predicted; the somewhat
lower F1 score for dodecamers is counterbalanced by excellent
accuracy and specificity scores which prove the network’s ability
to avoid minima overprediction. The origin of the performance
disparities between trimers, hexamers, and dodecamers is not
obvious; because performance does not vary monotonously
from short to long polymers, it does not involve the fact that
longer polymers benefit from a deeper network (the recursive
layers being invoked multiple times). In fact, adding convolu-
tional layers to the recursive subnetwork was tried and did not
result in a noticeable increase in performance.

Generating Stable Oligosaccharide Conformations on
the Fly.The recursive convolutional network has proved able to
identify stable oligosaccharide conformations regardless of

length. However, in the use-case of high-throughput docking
simulations, the ability to suggest such conformations on the fly
without the need for costly molecular dynamics simulations is
desirable. Therefore, a generative adversarial network (GAN)
was built and trained to suggest potential free energy minimum
structures for oligosaccharides of any length and substitution
(Figure 6). It consists of two subnetworks: (i) a generator, which
takes as input a point in a low-dimensional “latent space” and
generates a corresponding minimum structure; (ii) a discrim-
inator, which takes such generated conformations as input and
tries to distinguish them from actual minima. Both subnetworks
are trained simultaneously, with opposing goals: the discrim-
inator is fed a training set mixing actual minima and generated
conformations and gets better at distinguishing one from the
other, while the generator gets better at “fooling” the
discriminator by creating ever more realistic conformations.
The convergence of this unsupervised learning process is
achieved once generator and discriminator reach a stalemate.40

The capacity of a trained generator to create realistic instances of
complex data has been applied to many fields, including
bioinformatics41 and molecular design.42 Here, the discrim-
inator network employs the previously validated recursive
convolutional network. For the generator, monomer and
connector subnetworks of fully connected neurons are
respectively called N and N − 1 times to generate an N-mer
conformation; their output is contrained to the [−1, 1] range
using hyperbolic tangent nodes and interpreted as the (cos ϕ,
sign(sin ϕ)) values of all relevant dihedral angles Φ. Latent
space dimensions of 16 and 8 for the monomer and connector
subnetworks were found to adequately balance generator
performance and computational cost. The oligomer substituent
sequence was fed into both generator and discriminator
networks using embedding nodes, which technically makes the
network a conditional GAN;43 for the generator, the output of
the embedding nodes directly multiplies the latent space input.

Figure 6. Generative adversarial network. The discriminator subnetwork is identical to the recursive convolutional network on Figure 5.
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The GAN was trained for 800 epochs on a set of ∼27 million
trimer, hexamer, and dodecamer minima. From 400 epochs on,
the binary cross-entropy loss for both generator and
discriminator oscillated repeatedly and periodically between
two values, indicating that a stalemate between both had been
reached in which each subnetwork continually countermeasures
the other’s action. There is no theoretical guarantee that a given
GAN can achieve simultaneous stabilization of both subnet-
works, and in practice, this is seldom the case even in toy
systems;44 the learning process was thus considered complete,
having reached a state of dynamic equilibrium (see Figure S5 for
additional detail). The generator weights corresponding to the
smallest encountered loss were retained; the generator was then
decoupled from the discriminator and used to suggest the
relevant dihedral angles for 100 stable conformations of each of
the oligomers under study (see Supporting Information for the
procedure used to generate conformations from the dihedral
angle values).
The performance of the trained generator subnetwork is

illustrated on Figure 7 by comparing the distributions of free
energies and distances to the closest minimum on the surface
between randomly chosen conformations and those suggested
by the GAN. The distribution of generated free energies for all
oligomer lengths has an average of 2.2 kcal mol−1 and an upper
quartile of 3.3 kcal mol−1, in stark contrast to the random
distributions in which very high-lying conformations (>40 kcal
mol−1) appear prominently. Similarly, the distribution of
distances to the nearest minimum for the generated con-
formations efficiently filters out the high-lying entries in the
random distribution (with respective upper quartiles of 1.3 and
2.5). Interestingly, the relative decrease in the spread of distance
values is not as large as the one observed for free energies. This is
due to the fact that many free energy surfaces feature extensive
attraction basins containing multiple minima separated by low
barriers: a conformation can thus be relatively structurally
distant from a minimum and still belong to the latter’s basin.

These statistics prove the generator’s ability to generate
sensible conformations “on the fly” that can be used in the
subsequent steps of a pipeline: for instance, by populating a
library of potential oligosaccharide mimics which will be docked
to a given protein target. Indeed, we are currently using the
neural networks in this study to build a library containing
hundreds of thousands ofmimics; it will be queried using a graph
representation of the nature and relative position of the hotspots
at the target PP interface, rapidly providing the most likely
candidates for the inhibition of the corresponding PP complex.
With the training set generation and learning protocols
validated, new monomer susbtituent types of specific interest
can be added straightforwardly, by updating the networks’
training based on additional molecular dynamics simulations.

■ CONCLUDING REMARKS
A self-consistent model of polysaccharide conformational
preference remains in the future. However, two avenues for
improvement can help bring this goal closer: (i) enrich the
corpus of accumulated conformational data on these molecules,
which is still direly underdeveloped considering the natural
relevance of oligosaccharides, and (ii) devise models to bridge
the gap between local and global structural descriptors, which
remains the stumbling block of current studies. The present
work contributes to both avenues by providing extensive, long-
time scale, enhanced-sampling all-atom simulations with
accurate conformational free energy estimations, on which the
ability of conformational deep learning to detect multiscale
spatial patterns is leveraged. It shows that the conformational
behavior of longer oligosaccharides can indeed be inferred from
their smaller constituent spans but also demonstrates that the
relationship is far from trivial, being dominated by collective
effects on spans of different sequence lengths. In addition, the
capacity to rapidly suggest potentially stable conformations of
oligosaccharides of given lengths and substitutions using GANs

Figure 7. Performance of the GAN for the suggestion of stable conformations of random oligomers, compared to randomly selected conformations.
Top row: distribution ofΔG above the global minimum. Bottom row: distribution of Euclidean distances to the closest minimum in the plane spanned
by the first two dPCA eigenvectors. Quartiles are indicated by dashed lines.
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is very valuable for the population of libraries of mimics, which
should prove beneficial for the rapid and easy preselection of
possible inhibitors of PP complexes of interest.

■ DATA AND SOFTWARE AVAILABILITY
The following data is provided for download at https://extra.u-
picardie.fr/nextcloud/index.php/s/52t2DHYDgswEJ3w: top-
ology files for all mimics; 3D structures of all minima; free
energy landscapes along the first two angular principal
components for all systems; source files for the dPCA PLUMED
module and the neural networks; weights and biases for the
trained networks. The full molecular dynamics trajectories for all
systems (2 TB of data) are available upon request.
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