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ABSTRACT: To power the specific recognition and binding of protein partners
into functional complexes, a wealth of information about the structure and
function of the partners is necessarily encoded into the global shape of protein−
protein interfaces and their local topological features. To identify whether this is
the case, this study uses convolutional deep learning methods (typically leveraged
for 2D image recognition) on 3D voxel representations of protein−protein
interfaces colored by burial depth. A novel two-stage network fed with
voxelizations of each interface at two distinct resolutions achieves balance
between performance and computational cost. From the shape of the interfaces,
the network tries to predict the presence of secondary structure motifs at the
interface and the molecular function of the corresponding complex. Secondary
structure and certain classes of function are found to be very well predicted,
validating the hypothesis that interface shape is a conveyor of higher-level
information. Interface patterns triggering the recognition of specific classes are also
identified and described.

■ INTRODUCTION

Protein−protein (PP) complexes are the ubiquitous effectors of
biological function. Recognition and interaction between
protein partners occur along PP interfaces, which hold
tremendous promise as druggable targets.1 PP interface
modulators can for example be used to correct the misregulation
of interfaces involved in numerous diseases.2−4 Within
microbes, PP interface inhibitors can disrupt the formation of
PP complexes implementing vital functions in a way that is much
less prone to the outbreak of resistance than traditional active-
site-targeting drugs.5−8

Although their sizes and shapes can vary tremendously, PP
interfaces are on average large and flat, with only a small
proportion of interface amino acids (termed hotspots)
contributing significantly to the overall binding free energy.9

Moreover, the interfaces of biologically relevant PP complexes
may be hard to distinguish from those of transient complexes
stemming from random interactions between noncognate
partners due to crowding within the cytoplasm.10 The putative
relationship between topological and/or chemical features of PP
interfaces on the one hand and molecular function or biological
process on the other is thus very complex and has not been
rationalized to date. In fact, choosing a self-contained set of
minimally correlated features as a subspace in which to
successfully categorize PP complexes remains an ongoing
challenge.11−13 Because of its synthetic and predictive power,
deep learning is currently gaining traction for the study of PP

interfaces based on sequence,14−16 structural data,17 or
both.18,19 However, the problem of selecting a feature space
and efficiently encoding it for machine learning remains. A
commonly used rationale to find trends in PP interfaces is to use
a very large number of very diverse descriptors and let the
learning algorithm pick the relevant ones. For example, Qiao et
al. used 82 distinct features, both local and global (one
temperature, 10 physicochemical, 36 structural, five evolu-
tionary, and 30 solvation properties).20 While learning
algorithms can detect simple correlations between features,
their performance strongly depends on the encoding of the
features, the renormalization of their values to a common range,
and the mix of global versus local features, which are user-
defined and far from trivial.
In this work, I use convolutional deep learning techniques to

examine howmuch structural and functional information can be
inferred from the global shape of a PP interface (defined as the
surface equidistant to the atoms of both partners) and its
accessibility to water. This is a crucial question: PP interfaces
power PP recognition and thus probably encode, in a manner
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which is still unknown and probably quite complex, the high-
level information required to specifically form a functioning
complex. Deep learning techniques can identify and model
complex nonlinear relationships within large datasets but
generally fail to provide an explicit representation of the latter
and are thus often termed “black boxes”. Convolutional
networks differ in this respect: the patterns triggering
recognition in the trained neurons can be extracted and
visualized, often yielding valuable information on how the
network “sees” and categorizes the input data. This in turn
should provide insights into the ability of interface topologies to
power elaborate recognition schemes by acting as carriers for
more complex structural or functional information.
Convolutional neural networks, which emulate the hierarch-

ical detection of features by cells in the visual cortex, have proved
to be very efficient in the field of 2D21 and 3D22 image
recognition. Matrices of neurons called filters are arranged in
consecutive connected layers; first-layer filters detect simple
patterns (edges, textures, etc.), activating second-layer filters,
which integrate multiple simple patterns into more complex
ones that in turn are fed to the next layer, and so on. This
detection of patterns is robust toward displacements, small
deformations, and noise. In recent years, convolutional networks
have been increasingly employed for the prediction or
classification of PP interfaces based on 2D contact maps18,19

or 3D images obtained by discretizing 3D structures into voxel
sets (cubic volume elements akin to 2D pixels).17,23,24 In this
work, the PP interface topologies, obtained as 3D polygon
meshes using Voronoi diagrams of the partner atoms,25 are
discretized into 3D images using voxels that are colored
according to their burial depth within the interface. Indeed,
buried (desolvated) interface regions are known to be enriched
in conserved hotspot residues, which are crucial to recognition
and binding.25,26 By the use of a global topological description
colored by a single important feature relating structure to
conservation, this study hopes to avoid the normalization pitfalls
that comewith usingmultiple features, staying close to the actual
definition of a PP interface and leaving to the convolutional
network the task of finding relevant local patterns from global
data.
Thus, I build a dataset of more than 50 000 PP interfaces

voxelized at two distinct resolutions (coarse and fine). The
dataset is used as input for a novel two-stage convolutional
network that simultaneously takes information from both
resolutions, capturing more surface detail than previous
studies17,23,24 while restraining computational cost. This novel
dataset is used to tackle two learning problems. First, I look at
whether interface topologies can be used to predict the presence
of α-helix and/or β-sheet motifs at the interface. This is far from
trivial: frequently occurring patterns of interacting secondary
structure motifs have been identified,27 yet the interface along
which they form contains only a fraction of the atoms of such
motifs, and their combination often results in flat patches with
few salient features.28 Is this sufficient to make secondary
structure a driving force of specific PP recognition? Predicting
secondary structure from interface geometry is also quite
important for de novo interface design29,30 or the conception of
PP interface modulators.31 Second, I explore whether interface
topology can predict the molecular function of a PP complex.
This much more indirect relationship has not been explored to
date; if it exists, it has profound implications for the amount of
implicit information encoded within interfaces and would be a
large step in understanding why random noncognate PP

interactions do not give rise to stable complexes. Finally, in
view of the fact that local secondary structure elements have
been successfully linked to function,32,33 relating both notions to
interface topology appears to be a promising unifying goal.

■ METHODS
Interface Meshes. The dataset of PP complexes used in this

study are the entries of the HIPPDB and SIPSIPPDB databases
of Arora and co-workers,34 which categorize PP complexes in
the Protein Data Bank (PDB) on the basis of the nature of
secondary structure motifs at their interface. The structures of all
HIPPDB and SIPPDB entries were retrieved from the PDB.
Missing or incomplete residues in the interface region were
replaced, and their conformations optimized, using MOD-
ELLER.35 Entries that contained only backbone atoms or had
been invalidated or superseded since the publication of HIPPDB
and SIPPDB were discarded. Water molecules were added at
sterically available and energetically favorable positions within a
5 Å radius around the interface using Solvate;36 this harmonizes
PDB files with respect to the presence of structural water
molecules.
The resulting structures were input into the Intervor module

of the Structural Bioinformatics Library.37 Intervor computes
the three binary interfaces AB, AW, and BW between the two
protein chains A and B and interfacial water molecules W as the
Voronoi power diagrams of the corresponding atoms. The
water-mediated ternary interface ABW employed in this study
was obtained as the union of these three binary interfaces. The
resulting Voronoi facets were shelled from the rim to the core of
the interface, associating to each facet an integer shelling order
(SO).25 The SO represents the number of “jumps” between
adjacent facets needed to reach the interface rim from the
current location and thus is a good representation of burial
depth; high-SO patches have been shown to correlate strongly
with the presence of hotspots.25 In PDB entries with multiple
interacting protein chains, the entire process was repeated for
each of the pairs of chains forming an interface.
Particular dispositions of atoms at the interface rim can give

rise to rim Voronoi facets with near-parallel edges that artificially
extend very far from the interface. To prevent such unphysically
large rim facets from raising issues during the voxelization
process, the oriented bounding box of the unrimmed interface
mesh was computed, expanded by 10 Å in all dimensions, and
used to clip the interface mesh. This 10 Å limit to rim facet
lengths was chosen upon analysis of the distributions of rim facet
lengths and areas and resulted in 19% of interfaces requiring
clipping.

Voxelization. The voxelization and labeling processes
described in the following paragraphs are summarized in the
flowchart shown in Figure S1.
Each interface mesh in the dataset was voxelized at two

resolutions: 1 Å (fine) and 4 Å (coarse). This was done by
shooting rays along the positive z direction from a regular grid of
points in the xy plane, converting the intersection points of these
rays with the interface mesh to voxel locations, and coloring the
latter with the SO of the intersected facets (or zero when no
intersection occurred). The fine and coarse voxel grids were
cubes measuring 128 and 32 voxels to a side, respectively,
spanning 1283 Å3. This represents a much higher resolution than
previous studies using voxel representations of proteins or
interfaces.17,23,24 There were 423 complexes (0.7% of the
dataset) that featured interface meshes too large along at least
one dimension to fit within the grids, and these were removed
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from the dataset. The dataset thus obtained consisted of 56 864
interfaces, each associated with a coarse and a fine voxel
representation, 3D images that can directly be fed into
convolutional layers. Figure 1 demonstrates the voxelization of
a sample interface.
Labeling the Dataset. Depending on the learning task, the

dataset PP interfaces were labeled on the basis of either their
secondary structure motifs or the molecular function of the PP
complexes.
For learning interfacial secondary structure motifs, the labels

α and β were attributed on the basis of information in the
HIPPDB and SIPPDB databases. The labels were one-hot
encoded within a 2-vector (one vector component per label,
holding 1 if the label is set or 0 otherwise; entries containing
both α and β motifs have both labels set simultaneously). All
56 864 entries were thus labeled (35 206 α, 13 867 β, 7791
both).
For optimal learning of molecular function, labeling the

largest part of the dataset PP interfaces with the smallest number
of function-related tags is required. Gene Ontology terms
(GOTs),38 which annotate biological systems in terms of
molecular function, cellular component, and biological process,
appeared as a promising source of labels. The “slim” subset of
GOTs, curated by the Gene Ontology Consortium, was
employed; it provides a broad overview of functions, locations,
and roles by hierarchically grouping multiple related GOTs.39

The molecular function GOTs associated with each partner of
the dataset complexes were retrieved using PyPDB.40 There
were 15 286 dataset entries that lacked GOT annotations
altogether and 8814 more that had no molecular-function-
related GOT. The remaining 32 764 entries were described by
37 unique GOTs with tremendously varying representativity
(from 30 instances of “histone binding” to 20 380 instances of
“ion binding” PP complexes; see Figure S2).
This is not ideal: to facilitate machine learning, class labels

should satisfy the following criteria. First, they should be
available for the largest possible proportion of the dataset.
Second, the number of dataset entries per label should be as
balanced as possible. Third, the labels should be as independent
from each other as possible: their pairwise semantic similarity41

should be as small as possible, and the average number of labels
per entry should be as close to 1 as possible. However,
simultaneously optimizing these criteria proved to be impos-
sible. For instance, maximizing the number of retained dataset
entries led to the selection of a few highly represented GOTs,
resulting in large discrepancies in the number of entries
described by each GOT; conversely, maximizing the homoge-
neity of the number of entries labeled with each GOT led to the

selection of GOTs that are not as highly represented, drastically
reducing the number of labeled dataset entries. This is
demonstrated in Figure S3, which shows the pairwise correlation
between the criteria, and in Tables S1−S4, which present the
subsets of GOTs optimizing each criterion.
To identify the set of GOTs representing the best trade-off, a

score function was built upon the normalized contributions of
the above criteria, and all possible GOT sets that were
sufficiently small to allow efficient multilabel deep learning42

were scored (see Figure S4). The top-scoring set of labels, of
length 10 (presented in Table 1), was adopted as a descriptor of

molecular function for the PP complexes in the dataset, and
31 139 entries were successfully labeled with it. This is a
significant decrease from the original dataset size, but it was
sufficient to train a 10-label deep classifier network. Because of
the scarcity of entries having both verified structures and
function, the initial dataset was already unbalanced in terms of
protein families or function, and the culling was expected to have
no major detrimental statistical effect. Additionally, the average
pairwise RaptorX TM-score43 of structures within each class was
within the range observed for unrelated proteins, showing that
the classes were not dominated by a small number of folds (see
Figure S9). As previously, one-hot encoding was employed to
represent each entry’s labels as a 10-vector of zeros and ones.

Network Topology. The computational cost of 3D
convolutional networks increases rapidly with the resolution of
the filters. To alleviate this effort while preserving the ability to
learn from high-resolution interface features, this work employs

Figure 1. Multiresolution voxelization of a sample PP interface: (left) Voronoi interface; (center) coarse voxelization (4 Å resolution); (right) fine
voxelization (1 Å resolution). Voronoi facets and voxels are colored by SO value; the same color scale is used in all of the figures in this article.

Table 1. Selected Set of 10 GOTsUsed toDescribeMolecular
Functiona

GOT ID GOT population

GO:0016491 oxidoreductase activity 11224
GO:0008233 peptidase activity 5854
GO:0016829 lyase activity 3878
GO:0003677 DNA binding 2901
GO:0022857 transmembrane transporter activity 2864
GO:0016301 kinase activity 1691
GO:0016853 isomerase activity 1622
GO:0005198 structural molecule activity 1309
GO:0016810 hydrolase activity, acting on carbon−nitrogen

(but not peptide) bonds
1228

GO:0016874 ligase activity 1084
aThis set is a trade-off between maximizing the number of dataset
entries, minimizing the semantic similarity between GOTs, minimiz-
ing the number of GOTs per entry, and minimizing the standard
deviation of GOT populations over the dataset.
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the two-stage convolutional neural network schematized in
Figure 2. The main stage (dubbed CLC) is a label classifier that
takes as input the coarse (32 × 32 × 32) voxelization of a PP
interface and outputs an n-vector of probabilities that the input
carries each of the n labels. CLC is composed of a succession of
three convolution−maxpooling−ReLu blocks of decreasing size
and increasing depth, a dropout layer, and a series of densely
connected layers, with the final layer’s depth set equal to the
number of labels. The convolution layers have a kernel size of 3
× 3 × 3, a stride of 1, and a padding of 1; the maxpooling layers
have a kernel size of 2× 2× 2, a stride of 2, and no padding; such
relatively small, overlapping kernels were found to give the best
results, as they also do for 2D image classification.
An auxiliary stage of similar composition (denoted F2C)

predicts the scalar value of a coarse voxel from the corresponding
4 × 4 × 4 fine voxels. F2C basically performs a dimensionality
reduction operation, choosing the most salient high-resolution
features to encode into the low-resolution representation; it thus
yields potentially more relevant low-resolution voxelizations
than the simple ray-casting procedure described above. In each
forward pass of the two-stage network, a user-defined proportion
of randomly selected coarse voxels are replaced by the
corresponding predictions of the F2C stage before the coarse
voxelization is input into CLC. A value of 40% was found to be
an acceptable trade-off between accuracy and computational
cost.
Deep Learning. The dataset was split into a training and a

test set with respective populations of 75% and 25%. CLC was
pretrained to predict the correct label vector from the coarse
voxelizations of the training set PP interfaces. F2C was
pretrained on 4 × 4 × 4 voxel blocks randomly chosen from
the fine voxelizations of the training set interfaces using an
autoencoder, obtained by plugging a mirror image of F2C into

the output of F2C and predicting the input voxel blocks from
themselves. In such an autoencoder, the input data fed into the
network pass through a bottleneck, at which point the network
must choose what information to keep and what to discard so
that the input data can best be reconstructed.44 Once trained in
this fashion, the F2C subnetwork is thus guaranteed to provide
coarse voxel values that encapsulate the most relevant
information contained in the corresponding fine voxels.
CLC and F2C were then combined as shown in Figure 2, and

their pretraining was refined to predict labels from the combined
coarse and fine voxelizations of the training dataset. Binary cross-
entropy with logits was used as the loss function, and the
network weights were optimized using stochastic gradient
descent. To reduce overfitting, dataset augmentation was
performed by applying to the training set samples, with a
probability of 15%, a random number of π/2 rotations along
each of the three base axes x, y, and z and a random number of
flips along the three base planes xy, xz, and yz. All of the deep
learning tasks were implemented using the PyTorch API.45

Clustering of Voxel Motifs. The clustering of voxel motifs
maximizing the activation of individual convolution filters was
performed as follows. In each voxel set, a blob detection
algorithm46 was employed to detect contiguous zones of high
SO. A graph was then built using the blob diameters as node
weights and the distance between blobs as edge weights. The set
of graphs associated with all convolution filters were then
clustered by means of the spectral clustering method47 using the
graph edit distance48 as a metric to compare graphs with one
another. The number of clusters was chosen to maximize the
silhouette score and minimize the Davies−Bouldin score, both
of which are well-documented descriptors of clustering
performance.47 To obtain a finer clustering, a hierarchical
approach was employed: the clusters were recursively

Figure 2. Architecture of the two-stage CLC/F2C convolutional network. The nature of a layer is indicated by its prefix (conv = 3D convolution; fc =
fully connected). Shown at the left are the 32 × 32 × 32 (coarse) voxelization of an example interface, colored by shelling order (SO), and the
decomposition of a coarse voxel into its 4 × 4 × 4 subset of fine voxels, both of which are used as input to the neural network. The depths of the fully
connected layers of the CLC subnetwork, which depend on the number of labels to predict, are given in the table at the right (α/β, interfacial secondary
structure elements; molFunc, molecular function).
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subdivided into subclusters as long as no major degradation of
the silhouette or Davies−Bouldin criterion was observed and the
subclusters remained relatively balanced in size (i.e., no
singleton clusters). According to these criteria, a clustering
depth of 2 was found to be optimal for both learning tasks
considered. To facilitate the viewing as 3D images of the
representative voxel motifs obtained from the clustering, they
were denoised using a wavelet filter.46

■ RESULTS
Prediction of α/β Interface Motifs and PP Complex

Molecular Function. Instances of the two-stage network
shown in Figure 2 were trained (on the training set) to predict
the presence of α or β motifs at the interface and the molecular
function of the PP complex. The learning performance was
subsequently evaluated (over the test set) by measuring the per-
class prediction accuracies and F1 scores. As a benchmark of the
dual-resolution methodology, the benefit of using the F2C stage
was evaluated by comparing the predictive performance of the
full network with that achieved by the CLC stage only.
Accuracy is a straightforward, easy to interpret measure that is

proportional to the sum of true negative and true positive
predictions; however, in datasets with multiple unbalanced
classes (like molecular function in the present study), under-
represented classes have very high true negative scores by
definition and feature artificially high accuracies even if the
network is unable to predict them (low true positive score).
Figure S5, which shows the prediction accuracies for the 10-class
molecular function problem, illustrates this clearly. In such cases,
the F1 score, a mixture of precision and recall that does not
involve true negatives, is considerably more informative of the
prediction quality. However, the F1 score is much less intuitive
than the accuracy and is also affected by class imbalance. To
alleviate this, the normalized score F1norm is used here: F1norm =
(F1− F1rand)/(1− F1rand), where F1rand is the F1 score achieved
by a random classifier for predicting the selected class over the
considered dataset. F1norm thus ranges from 0 (random
predictor) to 1 (perfect predictor).
The converged accuracies and normalized F1 scores for the

prediction of secondary structure are shown in Table 2; for

molecular function, only F1norm is shown (Table 3) since
accuracies are misleading. The evolution of these statistics with
the number of training epochs can be found in Figures S6 and
S7.
As can be seen, excellent accuracies and F1 scores are achieved

for the prediction of α and β motifs at the interface using the
complete CLC+F2C network. The F2C subnetwork does not
significantly improve the accuracy, but it has a marked effect on
the F1 score, which is actually more relevant since the dataset is
somewhat unbalanced (75.6% α motifs vs 38.1% β motifs).
From these results, it can unambiguously be claimed that the
overall interface shape encodes and is specific for interfacial
secondary structure motifs.

In the case of molecular function, the network achieves much
better scores than a random classifier for the prediction of all
functional classes but overperforms for oxidoreductase,
peptidase, and membrane transporter activities compared with
kinase or hydrolase. Interestingly, the scores obtained are higher
than those achieved using other structure-based predictors,
despite the much larger number of features included in the
latter.49,50 They are similar on average to those obtained by
Amidi et al.24 on voxelized representations of protein backbones
(once the F1 score provided by these authors has been
normalized). Both approaches perform better for oxidoreduc-
tases (0.74 vs 0.71) and worse for ligases (0.49 vs 0.45);
interestingly, the Amidi approach predicts hydrolases rather well
(0.74), whereas the present method differentiates peptidases,
which are very well predicted (0.82), from other hydrolases, for
which prediction is difficult (0.35).
The F2C subnetwork substantially improves the prediction of

all classes; as can be seen in Figure S7, it also prevents the onset
of overfitting, which tends to occur beyond 100 training epochs
for the CLC network, causing the F1 curve to plateau and
decrease, whereas the CLC+F2C score continues to slightly rise.
Encouragingly, the prediction performances seem to be
decorrelated from the label populations, making it likely that
the observed trends are due to the interface topologies
themselves and their diversity within each functional class
rather than dictated by statistical artifacts. Finally, adding
convolutional or dense layers or increasing their size did not
result in a significant boost in the F1 scores (data not shown),
which implies that the limiting factor is probably the quality of
the dataset, the voxel resolution, or the actual information
contained in the interfaces.

Analyzing Layer Activations. I now examine the
activations of the 224 individual 3D convolution filters of the
trained networks (32, 64, and 128 in layers 1, 2, and 3,
respectively) when instances of interfaces bearing α or β motifs
or belonging to each of the 10 molecular function classes are
presented to them. The activations of the neurons in the fully
connected (dense) layers (962 for the prediction of secondary
structure and 1290 for molecular function) were similarly
studied. Principal component analysis (PCA) was performed
over the set of vectors containing the activations of all dataset
samples. These activations were then projected onto the two
first eigenvectors (which explained more than 90% of the total
variance over the dataset for both learning tasks and both dense
and convolutional neurons). The density plots of these
projections are depicted in Figure 3. As can be seen, the
activation patterns for the convolutional layers do not seem to

Table 2. Accuracy (Acc.) and F1norm Values for the Prediction
of α and β Motifs Using the CLC Subnetwork Only or the
Complete CLC+F2C Network

CLC CLC+F2C

Acc. F1norm Acc. F1norm

α 0.94 0.66 0.94 0.86
β 0.90 0.73 0.91 0.85

Table 3. F1norm Values for the Prediction of Molecular
Function Using the CLC Subnetwork Only or the Complete
CLC+F2C Network

function CLC CLC+F2C

oxidoreductase 0.63 0.71
peptidase 0.79 0.82
lyase 0.33 0.40
DNA binding 0.43 0.48
transporter 0.67 0.73
kinase 0.26 0.33
isomerase 0.30 0.36
structural 0.47 0.56
hydrolase 0.25 0.35
ligase 0.38 0.45
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clearly distinguish the labels from one another, whether for the
prediction of secondary structure or molecular function: the
corresponding density plots overlap each other to a large extent.
Interestingly, the point cloud for interfaces bearing both α and β
motifs extends into a region of eigenvector space distinct from
that corresponding to α or β only, hinting at the existence of
specific patterns for such interfaces. On the contrary, the
activation patterns of the dense neurons clearly distinguish
classes from one another. This is most apparent for the
prediction of α and β motifs; once again, PP interfaces
simultaneously bearing both motifs occupy a distinct region
spanned by the second PCA eigenvector. However, to a large
extent, the dense layer activations alsomanage to disentangle the
10 different classes of molecular function. This means that the
interface patterns detected by the convolutional filters are
generally not specific to a given interface class; instead, the actual
prediction is performed downstream by the fully connected
layers, which aggregate and synthesize the information about the
motifs detected by the convolutional layers, achieving specificity.
Visualizing Convolution Filters. To visualize the types of

interface patterns that are recognized by the network, the input
voxels that maximize the activation of a given convolution filter
can be generated using a technique inspired from neural style
transfer.51,52 Starting from a random set of input voxels (e.g.,
Perlin noise), a forward pass through the network is performed;
the average activation of the filter and its gradient relative to the
input are computed. The gradient is then used to iteratively
update the input voxels in a way that specifically maximizes the
activation of the chosen filter. The voxel motifs maximizing each
of the 224 convolution filters in the three layers were thus
computed.
As is typically observed in neural style transfer methods

applied to 2D images, the obtained voxel motifs feature complex
patterns at different resolutions. Relevant exemplars are

rendered in Figure 4. Patterns activating first-layer neurons
look the most like actual interfaces, with features that are easily

distinguishable from background noise. These can consist of
zones of high SO surrounded by layers of progressively
decreasing SO, which are either sets of localized “hotspots” or
axis-oriented planes or lines; the combination of several such
elementary patterns is likely to match most of the real-life
interfaces encountered in the dataset. Patterns detected by filters
in the second layer tend to be larger and denser. They either
consist of high-frequency, noisy voxel distributions covering the
entire filter, spanning a limited range of SO values (whether high
or low) and bearing little resemblance to actual interfaces, or
they appear as large blobs separated by blank/rim voxels, with a
progression of SO values that are much closer to those of real
interfaces. Finally, third-layer filters appear much sparser,
consisting of isolated, often parallelepipedic blocks of low-SO
voxels surrounded by rim voxels. Encouragingly, the motifs
maximizing filters from all three layers were found to be roughly
independent of the Perlin noise pattern used to initialize the
optimization process, with most of the apparent differences
disappearing in less than 10 iterations. Clearly, although the
activation functions are highly complex and nonconvex, their
local maxima all share a common nature, and the voxel motifs
presented herein are representative.
To obtain a synthetic view of the different types of voxel

motifs maximimizing filter activations, the motifs were hierarchi-
cally clusterized as described in Methods. Both for secondary
structure and molecular function predictors, this resulted in two
first-level clusters (denoted 1-1 and 1-2), which are further
subdivided into five second-level clusters (labeled 2-1 to 2-5).
They are presented in Figure 5. The voxel motifs contained
within each cluster were analyzed on the basis of the distribution
of high-SO voxel groups or “blobs” (distance between blobs,
typical blob size, and SO) as well as on the layer containing the
convolutional filter that each voxel set maximizes. Unsurpris-
ingly, both for the prediction of α/β elements and for that of
molecular function, the first level of clustering clearly separates
second-layer (cluster 1-1) from third-layer filters (cluster 1-2):
the former are dense and noisy and target high SO, while the
latter are sparse and feature low, homogeneous SO values. First-
layer motifs, which are very diverse in terms of density, are
distributed in both clusters.
For the prediction of α/β elements, the second level of

clustering splits the dense and noisy motifs of cluster 1-1 into
two subclusters, regrouping in 2-1 most of the first-layer motifs
along with the less dense and more interface-like exemplars of
second-layer motifs. Cluster 1-2 is split mainly on the basis of
typical blob size: 2-3 and 2-4 are built from third-layer filters and
feature isolated small (2-4) or medium-sized (2-3) blobs of low

Figure 3. Density contours of the activations of the 3D convolution
filters (left column) and fully connected neurons (right column) for
samples tagged with a given label (top row: secondary structure;
bottom row: molecular function), projected on the first two principal
components of the activations of the complete dataset.

Figure 4. Typical examples of voxel patterns maximizing the activation
of convolution filters in the network’s (left) first, (center) second, and
(right) third convolution layers. Voxels are colored by SO value.
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SO surrounded by rim voxels; 2-4 also contains first-level filters
that contain axis-aligned 2D or 1D patterns. Finally, 2-5 isolates
a small number of sparse first-layer filters detecting localized SO
hotspots.
Molecular function filters follow a similar clustering trend. At

the first level, the segregation between second- and third-layer
filters (in 1-1 and 1-2, respectively) is still apparent but not as
perfect as for the prediction of secondary structure. At the
second level, 2-1 and 2-2 differ mostly by SO values, with 2-2
regrouping third-layer and lower-SO second-layer filters. Cluster
2-5 isolates sparse, low-SO third-layer motifs from denser motifs
in 2-4, including most first-layer ones. Finally, 2-3 regroups a few
first-layer motifs targeting sparse high-SO hotspots. On the
whole, compared with the α/β case, the blobs are smaller and
interblob distances are larger, and first-layer filters tend to react
to higher SO values.
Having regrouped the patterns activating convolutional filters

into clusters, it is now much simpler to examine how the
different interface types in the dataset activate the network. For
each second-level cluster, the 50 PP interfaces that predom-
inantly activate this cluster over all other clusters were identified,
and statistics were performed over their labels (corrected by the
relative populations of labels in the entire dataset). The results

are shown in Figure 6. For the prediction of secondary structure,
they are striking: clusters 2-1, 2-2, and 2-5 (built mainly on

second-layer filters) respond overwhelmingly to α patterns,
while 2-3 and 2-4 (favoring third-layer filters) appear specific to
β patterns. This means that secondary structure is mainly
detected in the second layer of the network, which combines
together patterns detected in the first layer. The third layer
effectively performs a logical NOT operation on the second-
layer results and thus appears largely redundant: predicting
secondary function seems to be a relatively simple task that does
not require very deep networks. Another important finding is
that the specific response of clusters to α or β motifs is not only
due to the second- and third-layer motifs that make up most of
the clusters’ populations. Indeed, although first-level filters in 2-1
and 2-2 are always more activated than those in 2-3 and 2-4, the
activation of the latter is 2.31 times superior in the case of β
instances compared with α (data not shown). These sparse, low-
SO filters thus act as a correction to the baseline provided by the
dense, high-SO filters in 2-1 and 2-2, switching recognition from
α to β.
Figure 7 shows samples from the five top-scoring interfaces for

the activation of each cluster. Clusters 2-1 and 2-2 favor highly

Figure 5. Hierarchical clustering of voxel motifs maximizing the
activation of the 3D convolutional filters: (top) prediction of secondary
structure motifs; (bottom) prediction of molecular function. For each
cluster, the distribution of filters within the three layers of the network is
shown as a pie chart. The average proportion of small interblob
distances (SD), the average proportion of large blobs (LB), and the
median shelling order (SO) are also shown as dots on a horizontal scale.
The population of each cluster is proportional to the diameter of the
blue circle next to to its name.

Figure 6. Label distributions of the 50 dataset entries that maximize the
activations of convolutional filters inside a given cluster for the
prediction of (top) secondary structure and (bottom) molecular
function. The distributions have been corrected to account for the
relative population of each label in the entire dataset.
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curved interfaces that have large, continuous cores with high SO;
all of the top five activators of 2-2 are relatively small, wedge-
shaped hydrophobic “pockets”with a small rim/core ratio, while
those of 2-1 are larger and have extensive rims. Top triggerers of
clusters 2-3 and 2-4 tend to feature lower SO; in 2-3, interfaces
consisting of several sometimes disconnected hotspots appear
prominently, while 2-4 mainly has small interfaces among its top
five. Finally, interfaces maximizing 2-5 are more diverse but
mostly look isotropic and relatively flat. Overall, β activation
patterns are compatible with interfaces that are smaller andmore
accessible to water than their α counterparts, which could be
linked to the typically larger solvent exposure of the β-sheet
backbone.53

Conversely, the correlation between molecular function and
activated filter cluster (Figure 6) is not asmarked. The activation
of cluster 2-4 was not found to be dominant in any PP interface.
Cluster 2-5, which contains most third-layer filters, reacts
strongly to peptidase activity, which it distinguishes from
oxidoreductase activity. Since these two are the most
represented classes in the dataset, it makes sense that the
network would allocate a large number of filters to classify them,
but it is interesting that these belong to the third layer, which
synthesizes outputs from both previous layers into large-scale
patterns. On the contrary, clusters 2-1 to 2-3, which react to
most functional classes except peptidase, mainly encompass
second-layer filters that operate on a more local scope. Peptidase
thus appears to be an outlier whose detection requires a more
global view of the interface topology than any other functional
class. Other examples of relative specificity in the activation of
filter clusters include ligases and isomerases, which predom-
inantly trigger cluster 2-1. The filters detecting non-enzymatic
classes (structural molecules, transporters, DNA binding) tend
to be distributed between clusters 2-1, 2-2, and 2-3. On the
whole, as for the prediction of secondary structure, classification
seems to be mostly performed in the two last layers from
common elements detected by the first layer; however, for this
more complex prediction task, the neurons in the last layer are
used to their full extent.

■ DISCUSSION
Interfaces power the intricate mechanisms of PP recognition;
therefore, they necessarily convey a wealth of information that is

essential for a successful machine learning encoding to preserve.
However, maximizing the number of descriptors in an attempt
to capture this information as completely as possible can be
counterproductive: the bias introduced by the relative weight of
each descriptor, whether explicitly set or inherent to the
encoding, is difficult to evaluate and control. The aim of this
study is to use a simple yet robust representation of global
interface shape, implicitly taking sequence effects into account
via the correlation between residue hydrophilicity/hydro-
phobicity and water accessibility/burial depth. Convolutional
networks are then leveraged to extract salient local features from
this global representation, something at which they have been
proven to excel in the field of image recognition. This approach
solves in an elegant way, and with minimal human intervention,
the difficult problem of achieving a balanced mix of local and
global features to use in a successful predictor of structure and/
or function. Popular measures of structural similarity (DALI,54

TM-align,55 etc.) tend to prioritize global shape (fold), which is
often successful at predicting function; however, the functions of
structurally similar proteins can be very diverse, and variations
upon a conserved functional core can lead to different folds,33

making the consideration of local features indispensable.32 The
PRISM method,56 for instance, is quite successful at predicting
function from small sets of secondary structure motifs. This
work follows this logic and takes it one step further by
hypothesizing that if local secondary structure motifs can be
predicted from a global representation of the interface, so can
function. On the whole, the hypothesis appears to be verified. In
fact, the main caveat probably does not lie with the method itself
but rather with finding functional labels of balanced populations
for optimal deep learning (since only a minute fraction of entries
in sequence databases have both a structure and a verified
function,57 this issue is likely to endure). The method should
prove to be a valuable addition to existing de novo interface
design tools,58 which are used to suggest partners that bind to a
target protein along an interface of known shape.
Prediction of α and β interface motifs from interface topology

is excellent; the near-redundancy of the third convolutional layer
shows that the network is well-dimensioned to deal with the
problem. The correlation between secondary structure and
interface shape thus appears relatively straightforward, which is
far from trivial considering that in 60% of interface helices, only
one residue out of three actually has atoms at the interface.28

The slightly better prediction of α over βmotifs could be due to
the fact that the former tend to be better conserved59 and
conservation is strongly correlated with SO,25,26 which is used to
color the voxels. Helical motifs are also known to allow the
binding of different partners to a single site: helices are robust
toward changes in side-chain identities and variations in local
packing, allowing alternate ways to achieve binding.60 This
variability in helical patterns probably adds noise to the interface
topology dataset, which is known to facilitate deep learning by
preventing overfitting and facilitating generalization. The fact
that PP interfaces combining α and β motifs activate specific
recognition patterns distinct from those of either motif is quite
intriguing and suggests the existence of collective effects due to
specific arrangements of local motifs. Mixed α−β patterns have
indeed shown remarkable properties in chimeric oligomers, for
instance as rigidified α-helix mimics.61

Protein domains are known to act as functional units. The
ProtCID database,27 which clusters structurally similar interact-
ing motifs within PP complexes featuring identical Pfam
domains,62 hints at the existence of a link between structure

Figure 7. Examples of Voronoi interfaces maximizing cluster activations
for the prediction of interface secondary structure. Top row, left to
right: cluster 2-1 (PDB ID 1P5R), 2-2 (2VLL), 2-3 (1EZV). Bottom
row, left to right: 2-4 (1AVO), 2-5 (4GBI).
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and function at the domain level. Indeed, although Pfams tend to
be defined on the basis of sequence and structure, their
correlation with GOTs is now established.63 The present study
confirms this: more than 90% of the members of the ProtCID
clusters containing the top activators of the convolutional filter
clusters (Figure 6) were found to share at least one molecular
function GOT (see Figure S8 for details). The correlation with
Pfams also reinforces the relevance of GOTs as descriptors of
function in this study; compared with Pfam clans, the more
detailed hierarchical relationship between GOTs facilitates the
selection of functional label subsets for the generation of
balanced datasets.
Despite this, the prediction of molecular function from

interface topology does not appear as staightforward and heavily
depends upon the functional class. This is not entirely surprising
considering that only a fraction of the amino acids of interacting
Pfam domains actually contribute to the interface topology. A
similar trend has been observed by other researchers: by
clustering graphs of residues, Saha et al. showed that while larger
domains are rather specific of a given enzyme class (with the size
and diversity of such specific domains depending on the class),
frequently occurring small structural motifs at the interface are
common to all six classes (oxidoreductase, transferase, hydro-
lase, lyase, isomerase, and ligase).64 The link between interface
topology and function is thus understandably indirect.
Interestingly, however, the prediction of function from interface
topology studied herein performs no worse than structural
methods based on entire protein structures.24 This fortifies the
idea that conserved functional cores33 of intermediate sizes
indirectly impact interface topology as well as overall structure.
Also noteworthy is the fact that the prediction of function by

the network goes beyond the simple recognition of proteins
sharing a similar fold. As shown in Figure S9, the average
pairwise RaptorX TM-score43 among the main contributors to
the activation of convolution filter clusters is lower than 0.4,
which corresponds to a 90% chance of having different folds.
Understandably, the relationship to the fold is more marked for
the prediction of secondary structure elements, but the
corresponding TM-scores are still remarkably low. This shows
the ability of convolutional deep learning to detect finer trends at
different scales.
Saha et al.64 showed that motifs found in hydrolases have the

lowest overlap to motifs of other classes; my results hint that this
is mostly due to peptidases (which are detected by the network
with excellent specificity) rather than to other hydrolases.
Interestingy, Saha et al. found no overlap between oxidor-
eductase and hydrolase motifs (even smaller ones), yet in the
present work these two classes tend to activate the same
convolutional filters, whichmostly belong to the third layer. This
means that the overall disposition of motifs on a global scale
(detected by the third layer) is as important as the motifs
themselves, a testimony to the importance of mixing global and
local effects, which the F2C+CLC network strives to achieve.
Results on the prediction of non-enzymatic complexes are also
quite interesting. While it is not surprising that structural
molecules, which can be quite diverse, are difficult to predict, the
good score achieved by the network on membrane transporters
is intriguing. Indeed, sequence similarities between transporters,
whether within the same substrate transport subclass or for
transporters of different substrates, is usually very low.65

However, it has been shown that weakly stable regions in the
transmembrane domain of transporters are often implicated as
PP interfaces, with relatively little conformational entropy

variation upon binding;66 such conformational freedom could
introduce noise in the corresponding interface topologies,
boosting the learning process.
Both the prediction of secondary structure and molecular

function clearly benefit from the F2C subnetwork. While it is
easy to conceptualize that incorporating information from fine
voxelizations into coarse models of the PP interfaces is
beneficial, another more subtle consequence exists: by
modifying the value of random coarse voxels, the F2C
subnetwork also helps to regularize the dataset, preventing
overfitting (akin to the effect of data augmentation or a dropout
operation). Interestingly, considering that regularization is often
performed by adding random noise to the dataset, this added
benefit of F2C is expected to be quite independent of the actual
performance of the subnetwork, facilitating the learning process
even for interfaces that are not well-described by F2C’s
dimensionality reduction scheme. In addition, the independence
of the F2C and CLC subnetworks enables them to be trained
independently from one another on the same dataset, and the
weights can then be transferred to the complete network, whose
training then only needs to be refined. This type of transfer
learning has been proved to provide excellent results at a low
computational cost.67

Finally, the activation patterns of the convolution filters are
not as easy to interpret as those observed on 2D image sets. As
for the latter, first-layer filters consist of a variety of simple,
localized features. The occurrence of axis-oriented lines and
planes is quite interesting: it could represent the network’s
response to the fact that the input data is inherently two-
dimensional, composed of 2D facets separated by 1D edges, and
is reminiscent of the finding by Bau et al. that the directions of
the basis vectors are more meaningful than random directions in
2D convolutional network activations.68 Also interesting is the
prevalence of high SO values among patterns activating first-
layer filters; this is in line with the long-standing theory that
deeply buried, hydrophobic amino acid hotspots dictate PP
recognition and binding.69 Downstream convolutional layers
aggregate the information of upstream layers via maxpooling; in
2D images, this generally translates into larger and more
complex activation patterns when moving toward deeper
convolutional layers. Here, on the other hand, many second-
layer motifs appear to be quite noisy. Although high-frequency
noise patterns are inherent to strided convolution and pooling
operations,70,71 in this case they can be particularly difficult to
separate from the signal. Nevertheless, large patterns looking like
actual interfaces do occur for many filters of the second layer and
the majority of the third. In these, rim voxels (SO = 1) play an
important role: unlike hotspots, which are localized, solvation
effects require a more global view of the PP interface. This is yet
another manifestation of the combination of local and global
features inherent to the method.
Despite its successes, the method has room for improvement.

For starters, encoding a 2D surface using 3D voxels is rather
inefficient. Typical datasets of 2D or 3D images used for
convolutional deep learning usually do not have lower effective
dimensionalities. Scaling is also much less favorable in three
dimensions than in two: the size of the convolutional layers and
the associated computational cost quickly become limiting
factors as the voxelization resolution increases. In this work, the
use of a dual-resolution network alleviates the problem, and the
predictive power appears more limited by the unbalanced
dataset than by the voxelization resolution employed. Never-
theless, directly encoding and learning interfaces as cloud
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points72,73 or meshes74,75 appears to be more natural. However,
such nonuniform representations cannot directly leverage the
convolutional paradigm unless its basic operations (convolution,
pooling, etc.) are completely redefined. For instance, Hanocka
et al. used a transformation-invariant encoding of adjacent
edges, which can be collapsed to emulate pooling.74 These
techniques are still experimental and their pros and cons not as
well-mastered as traditional convolutional networks. Another
possibility for improvement would be to encode coevolution
data76 inside interface voxels. Enhancing structural data with
coevolution information has already proven to be successful19

and could yield even better results with this work’s simple yet
powerful representation of PP interfaces for the prediction of
molecular function.

■ CONCLUSION

By using convolutional deep learning, this study demonstrates
how a simple discretized representation can preserve a
meaningful proportion of the wealth of information contained
within the global shape of PP interfaces. The use of
convolutional techniques also naturally solves the problem of
mixing local and global structural descriptors within the dataset.
It is my hope that this study will provide additional incentive to
research novel interface topology encodings amenable to deep
learning and to implement them within de novo design and/or
function prediction pipelines.
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